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Abstract

Multipole moments are a powerful tool in general relativity. They provide a detailed de-
scription of the geometry of the spacetime, encoding information about mass and angular
momentum. The lowest order multipole moments can also be measured for some objects,
allowing to compare the theory with experiments. However, defining multipole moments in
general relativity is challenging. This thesis restricts to stationary asymptotically flat space-
times, starting with an extensive discussion of these key assumptions. A critical aspect is
ensuring the uniqueness in Geroch’s definition of asymptotic flatness [42]. We identify issues
with Geroch’s original result and propose a corrected version.

In stationary asymptotically flat spacetimes, several exact definitions of multipole moments
exist. Most notably, there are the Geroch-Hansen [48] and Thorne [107] formalisms in vac-
uum, which are explored in this thesis. Despite their very different definitions, the multipole
moments due to Geroch-Hansen and Thorne are equivalent.

Moving beyond vacuum, we investigate multipole moments in electrovacuum. There exists
a natural extension of the Geroch—-Hansen formalism to electrovacuum and we propose an
extension of the Thorne formalism. Recent work by Mayerson [77] defines gravitational mul-
tipole moments in rather general non-vacuum solutions of the Einstein equations, but these
alone do not sufficiently distinguish spacetimes. To see multipole moments at work in another
specific class of non-vacuum solutions where we can define natural matter multipole moments,
we extend the Geroch—Hansen formalism to scalar field solutions of the Einstein equations.
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Chapter 1

Introduction

In electromagnetism, a multipole expansion is a very powerful technique to study sources that
are contained in some bounded region. In that case, we can expand the electric and magnetic
potentials in spherical harmonics. The coefficients in a multipole expansion are called the
multipole moments. Multipole expansions are especially useful very far away from the source
because the lowest order terms can be used to approximate the electromagnetic field in that
region. Furthermore, the multipole moments provide a physical interpretation of the source:
the monopole moment represents the total charge of the system, the dipole moment describes
the separation of positive and negative charges and the higher order multipole moments
describe the distribution of charge in more complex geometric configurations.

In general relativity, we also want to be able to approximate the gravitational field far away
from the source and to interpret the gravitational field. Luckily, there also exist multipole
moments in general relativity! However, they are surprisingly difficult to define and we cannot
define them in all spacetimes. For stationary asymptotically flat vacuum spacetimes, there
exist multiple definitions of multipole moments. Stationary spacetimes are seen as equilibrium
states where geodesic motions are permanent. The sources are time-independent. Asymptotic
flatness implies the gravitational field falls off far away from the source, allowing us to expand
the gravitational field at “infinity”. The vacuum condition can in principle be extended to
broader classes of spacetimes, including matter. However, there are no multipole moments
describing completely arbitrary matter [77]. One can also define multipole moments with
arbitrary time dependence, but such definitions often describe only linear perturbations [57,
69, 107, 114]. There are no exact multipole moments to describe the full gravitational field in
arbitrary spacetimes. In this thesis, we study multipole moments in stationary asymptotically
flat spacetimes describing the full (nonlinear) gravitational field.

In the rest of the introduction, we want to put gravitational multipole moments in perspective.
We start with a discussion on multipole moments in Newtonian gravity, after which we turn to
general relativity. First, we discuss several attempts to define multipole moments in stationary
asymptotically flat vacuum spacetimes and after that we do the same in solutions of the
Einstein equations with matter. Multipole moments are not only a theoretical concept, but
they can also be measured as we will discuss next. Afterwards, we list the goals of this thesis,
provide an outline and list the conventions. We conclude with some guidelines for reading
and a list of new results.



Multipole moments in Newtonian gravity

In this part, we discuss multipole moments in Newtonian gravity. We work in the classical
setting of a three-dimensional space. For a more elaborate discussion, one may have a look
at the book by Poisson and Will [91, Section 1.5]. In classical mechanics, the gravitational
field is described by the Newtonian potential. Outside the mass distribution, the Newtonian
potential V is a solution of the Laplace equation:
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for some constants I'™ and E'™, where the functions Y™ are spherical harmonics [45]. The
coefficients I'™ are called the internal multipole moments and the coefficients E“ are called
the external multipole moments [121]. In many physical applications, we only have either
internal or external multipole moments. If there is an external gravitational field, then we
want the potential to be well-defined at the origin so that we set 1™ = 0. On the other
hand, if there is a mass distribution contained in a ball around the origin and we study the
gravitational field outside the ball, then we want the potential to fall off when going to infinity.
Therefore, we set E™ = 0. In this thesis, we will restrict ourselves to the second case, so we
assume lim, o V (7,0, ) = 0 and the Newtonian potential becomes

V(r,0,p) = Z Z [mp= D ytmg g, (1.1)
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We unambiguously call the coefficients I'™ the Newtonian multipole moments and we forget
about the external ones. In this equation, we work with spherical coordinates, but we can also
use Cartesian coordinates. A coordinate transformation from (r, 8, ¢) to Cartesian coordinates
(2!, 22, 2%) yields [107]
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is given by
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for m > 0. For m < 0, we have Y/, o = (—1)”322’5%. So, we can alternatively write (1.1)
in Cartesian coordinates as
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From (1.2), it is easy to verify that the tensors '™ with components J/al g, are symmetric
and trace-free. Therefore, we can also see Z! in (1.3) as a symmetric trace-free tensor with

components T, o, Equation (1.4) can be inverted by [107]
4rl!
l
Im 2l+1 Z CL1 .ay a1 .ap* (15)
ag,...,a;=1

The relations (1.4) and (1.5) show that the coefficients I'™ and the tensors Z! contain the
same information. Therefore, we can see the symmetric trace-free tensors Z' as a Cartesian
version of multipole moments and (1.3) is a multipole expansion with these moments.

We can also take a completely different approach. The idea is to view spatial infinity as a
point and do a Taylor expansion around this point. Let 7 = r~!, and consider V given by

V(r 0,0) =1 1V( -1 9,4,0)

Again, we use Cartesian coordinates but now we perform a coordinate transformation from
spherical coordinates (7,6, p) to Cartesian coordinates (3?1,52,53). The function V is har-
monic on R3\ {0} with respect to (7,6, ) or, equivalently, (il z2 53), meaning AV =0
where A is the Laplacian with respect to (7,0,¢) (or, equivalently, (z*,72,2%)) [45]. From
our knowledge of V', we observe that V must be finite at 7 = 0. But then the fact that V is
harmonic on R?*\ {0} implies that it must be harmonic on all of R?, including the origin [19].

Hence, the potential V' is analytic around 7 = 0 and a Taylor expansion gives [6]
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For each [, define a tensor P' by
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Each P! is symmetric because the partial derivatives commute and it is trace-free because

AV = 0 and we can commute the contracted _partial derivatives to the end. Moreover, we
can define the tensors P! recursively by PV = V and
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We view
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as a multipole expansion of the gravitational field. This gives another set of multipole mo-
ments, namely the tensors Pl|(51 7 390" Equations (1.1)/(1.3) and (1.7) provide two mul-
tipole expansions for the same grévftational field. The two Cartesian coordinate systems are
related by 7 = f—;, so (1.3) reads

(1 2~3 F ... g
V(ac o, g E a1 @l .

=0 a1,...,a;=1

Comparing to (1.7) shows that
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Therefore, we see that the two multipole expansions are equivalent, even though the deriva-
tions are very different.

Multipole moments in stationary vacuum solutions

For compact objects, Newtonian gravity is usually not sufficient and we need to turn to general
relativity. Therefore, we want to define relativistic multipole moments, but that is much more
difficult. The origins of research on multipole moments in general relativity date back to the
sixties and seventies. In stationary asymptotically flat vacuum spacetimes, several attempts
to define relativistic multipole moments have been made since then. We can distinguish the
existing definitions by whether they are coordinate-dependent of coordinate-independent. In
this part, we mention some of the definitions.

First, we mention some coordinate-dependent definitions. In 1968, Van der Burg [109] defined
multipole moments based on picking a “suitable radial coordinate” and performing a power
expansion. However, the “suitable radial coordinate” is not invariant and there is no method
to calculate it for an arbitrary spacetime [93]. A definition for multipole moments in static
spacetimes was given by Clarke and Sciama [31] in 1971. Here, the idea is to use Sommerfeld’s
method [23] to solve a Poisson equation. It is not known whether these multipole moments
can be generalised to stationary spacetimes [93]. Another coordinate-dependent definition of
multipole moments in stationary spacetimes was given by Thorne [107] in 1980. The criterion
for the coordinates was proposed and discussed by Thorne and it is clear that they give
well-defined multipole moments. Thorne’s multipole moments are also used in applications
because they are relatively easy to calculate (for low orders).

A coordinate-independent definition for multipole moments was provided by Geroch [42] in
1970, but it only works for static spacetimes. The approach by Geroch was generalised to
stationary spacetimes by Hansen [48] in 1974, delivering two sets of multipole moments:
the mass and angular momentum multipole moments. They should be seen as the mass
(mass monopole moment) and angular momentum (angular momentum dipole moment) of
the system and the higher order moments represent higher order corrections. The main
advantage of the definitions given by Geroch and Hansen is that they are purely geometric



and independent of the chosen coordinates. Alternatively, one can also view the Geroch—
Hansen multipole moments as power expansions of some gravitational potentials, as shown
by Beig and Simon [10, 11, 103] in 1981. In fact, Beig and Simon introduced the power
expansions as an alternative definition for multipole moments and showed they are equivalent
to the ones by Geroch and Hansen.

Due to their invariant nature and the fact that they generalise to stationary spacetimes, the
definitions by Geroch-Hansen and Thorne are the most important ones [93]. One can also add
the definition by Beig—Simon to the list, but these multipole moments are just another way
of writing the multipole moments by Geroch—Hansen. Surprisingly, the multipole moments
defined by Thorne are also equivalent to the ones by Geroch—Hansen, as shown by Giirsel [46]
in 1983. One can see the Thorne formalism as the relativistic version of the multipole moments
in (1.1), while the Geroch-Hansen formalism gives a relativistic version of the multipole
moments in (1.7) using the recursion relation (1.6). The equivalence of the Thorne and
Geroch—Hansen formalism can be interpreted in the same way as how these two definition
for Newtonian multipole moments are equivalent. Both formalisms and their equivalence will
be discussed in Part II of this thesis. Even though research on multipole moments started
about 60 years ago, it is surprisingly hard to get our definitions and assumptions straight. In
this thesis, we want to pay special attention to such issues and fill in some of the gaps in the
constructions of multipole moments.

Multipole moments in stationary spacetimes with matter

The multipole moments above apply to vacuum solutions of the Einstein equations, but we
also want multipole moments in solutions with matter. The Geroch—Hansen formalism was
generalised to Einstein-Maxwell solutions by Simon [102] in 1984. In this setting, there are
not only the gravitational mass and angular momentum multipole moments, but we also
have electric and magnetic multipole moments. The electromagnetic multipole moments are
needed to distinguish solutions of the Einstein—-Maxwell equations based on their multipole
moments. For example, the Kerr and Kerr-Newman solutions have the same gravitational
multipole moments, but the electromagnetic multipole moments are different.

The Thorne formalism has not been generalised to Einstein—-Maxwell solutions so far. To
calculate the first few multipole moments, the Thorne formalism is often easier than the
Geroch—Hansen formalism. Therefore, it would be convenient to generalise the Thorne for-
malism to Einstein—-Maxwell solutions. We achieve such a generalization in Chapter 8.

If we allow for arbitrary matter fields, there is still a lot unkown. A geometric way to define
the gravitational multipole moments in stationary asymptotically flat spacetimes in presence
of matter is given by Mayerson [77] in 2023. The Geroch-Hansen formalism relies on the
closedness of the so-called twist one-form, but it does not need to be closed anymore in
non-vacuum solutions. Mayerson proposed an alternative twist one-form that is closed and
reduces to the ordinary one in vacuum. This allows us to define multipole moments in the
same way as in the Geroch—Hansen formalism. However, the resulting multipole moments
only describe the gravitational field. Ultimately, we want to complement the gravitational
multipole moments by multipole moments containing information about the matter. We
investigate this issue for scalar field solutions of the Einstein equations in Chapter 9.



It can be seen as an ultimate goal to define multipole moments in all stationary asymptoti-
cally flat spacetimes. From a physical point of view, the Kerr and Kerr-Newman spacetimes
are probably the most important ones and we are luckily able to calculate their multipole
moments. Scalar field solutions for the hypothetical boson stars [99]. It could also be inter-
esting to investigate Einstein—Yang—Mills theory, where we have non-abelian matter fields.
In this theory, there are black holes that do not only depend on mass, charge and angu-
lar momentum [21, 68]. Einstein—Yang—Mills theory is the non-abelian generalisation of the
Einstein—-Maxwell theory.

Measuring multipole moments

In the discussion above and in this thesis, multipole moments are mainly a theoretical concept
describing the gravitational field. However, they also have concrete physical applications.
Multipole moments provide a way to test general relativity and identify sources. Instead of
determining the multipole moments for a theoretical spacetime, we now want to determine
the multipole moments for a real-world source.

In the framework of Newtonian gravity, the Earh’s multipole moments have been measured by
various satellite projects such as GOCE, LAGEOS and GRACE [30, 34, 111]. The measure-
ments are done by precise tracking of the satellites orbiting around the earth. In the GRACE
project, they managed to calculate the Earth’s multipole moments up to order [ ~ 360 [91].

However, for compact objects, general relativity is the appropriate framework. Measuring
multipole moments in general relativity has been pioneered by Ryan [96, 97] in the nineties.
The multipole moments of a large compact object at the center can be determined by the
gravitational radiation emitted by a smaller compact object orbiting around it. In the case
of extreme mass ratio inspirals, the planned gravitational wave detector LISA is potentially
able to measure the first few multipole moments [5, 8, 63, 74, 94]. It should be possible to
get rather accurate measurements for the first three multipole moments. For higher orders,
we would lose precision and it depends on the situation [39].1

Like was done with a satellite around the Earth, multipole moments of large compact objects
can also be determined by measuring the motion of stars or pulsars around them [113].
Alternative methods are studying accretion disks [22] and analysing the shadows of black
holes by the event horizon telescope [92].

Measuring multipole moments allows for several tests in general relativity. For example, we
can experimentally test the no-hair theorem/conjecture, which states that stationary black
hole solutions in vacuum are completely characterised by its mass and angular momentum.
(If we allow for the presence of an electromagnetic field and the spacetime should solve the
Einstein-Maxwell equations, we also need charge.) The no-hair conjecture has not been
proven yet, although it is often referred to as a theorem. Some weak versions are proven, but
they require rather strong assumptions, see for example [70, Theorem 10.26]. The measure-
ments allow us to check whether the multipole moments are consistent with the ones for the
Kerr (or Kerr-Newman) solution of the Einstein equations, providing a real-world test for the
no-hair theorem/conjecture [24, 60, 122]. The higher order multipole moments for the Kerr

'The order to which the multipole moments can be calculated depends on the model, the masses and radii of
the compact objects and the signal-to-noise ratio. Several tables describing the accuracy of the measurements
using a model by Ryan can be found in [97].



(or Kerr-Newman) solution can be expressed in terms of the monopole and dipole moments.
Therefore, already measuring up to the quadrupole moment would provide a consistency
check.

Another application where multipole moments contain useful information is for neutron stars.
The innermost stable circular orbit (ISCO) marks the inner edge of the accretion disks and
one can relate properties of the ISCO to the multipole moments [16, 98, 101]. There is also
a no-hair relations for neutron stars. The higher order moments should depend only on the
monopole, dipole and quadrupole moments [118], so measuring the octopole moment gives a
consistency check.

Goals of this thesis
In this thesis, we focus on the theoretical side of the medal. The goal is three-fold:

e Reviewing the important constructions for multipole moments in stationary asymptot-
ically flat spacetimes;

e Filling in the (mathematical) gaps in their constructions;

e Extending the definitions to broader classes of solutions of the Einstein equations with
matter.

Outline

The thesis is divided into three parts. In Part I, we discuss the geometric setting in which we
define multipole moments. In particular, we discuss stationarity in Chapter 2 and asymptotic
flatness in Chapter 3. This part is the cornerstone of the thesis in the sense that we need to
make precise what assumptions have been made to define multipole moments.

The important constructions for multipole moments in vacuum solutions of the Einstein
equations are described in Part II. In particular, we discuss the Geroch—Hansen formalism in
Chapter 4 and the Thorne formalism in Chapter 5. The equivalence of the resulting multipole
moments is shown in Chapter 6, together with some important properties.

In Part III, multipole moments in solutions of the Einstein equations with matter are dis-
cussed. We start with a discussion on the construction for multipole moments in Einstein—
Maxwell solutions by Simon in Chapter 7. Simon’s approach is a natural generalisation of
the Geroch—Hansen formalism. In Chapter 8, we propose an alternative approach to define
multipole moments in the presence of an electromagnetic field by mimicking the approach
by Thorne. We show that this also gives an equivalent set of multipole moments to those
defined by Simon as we would expect from vacuum. To open the door to other matter fields,
we discuss scalar field solutions in Chapter 9. This thesis is finalised with conclusions and an
outlook in Chapter 10.

Conventions and notation

We use geometrised units, effectively meaning that the speed of light ¢ and the gravita-
tional constant G are both set to 1. Moreover, we assume spacetime is a smooth, orientable,
connected four-dimensional manifold with empty boundary and endowed with a Lorentzian
metric. We adopt the “mostly plus” convention, so the signature of the metric is (— + +4).



We use the Einstein summation convention. Greek indices belong to and sum over 0,1,2, 3,
while Latin indices only belong to and sum over 1,2,3. Unless explicitly stated otherwise,
all our manifolds and tensor fields are smooth. We assume a spacetime is stationary unless
explicitly stated otherwise and we assume it is asymptotically flat from Chapter 4 onwards,
unless explicitly stated otherwise. The Levi-Civita connection for a 4-dimensional spacetime
(M, g) is denoted by V and the Levi-Civita connection for a 3-dimensional space (S,h) is
denoted by D. If we work on a 3-dimensional space (§ , h), we also decorate the Levi-Civita

connection so that it is denoted by D.

In this thesis, we mostly use more global notation in differential geometry used by mathe-
maticians, following Lee [72, 73] and O’Neill [86]. Table 1.1 is a non-exhaustive list relating
the notations by mathematicians and physicists such as Wald [112]. It is an extended version
of the table in Natario’s book [83, Section 1.2].

Table 1.1: Notation by mathematicians versus physicists in general relativity.

Object Mathematicians Physicists
Vector field X XH
Covector field/One-form w Wy
(k,1)-Tensor field T Thr

Metric tensor g(+,) v
Tensor product ST 5511.'.'.%]161 TIZTSIVZ?;;W

Lowered vector field X’ X,

Raised covector field wh wH

. : g M1 P—1 M1 Hi—1 PG e —1
LOWerlng an lndeX \l/] T Tlll...l/l+1 - gl/jplel...Vj_1Vj+1...Vl+1

Raising an index LT B L iy
Contraction C]Z: (T) Tzﬁl_:f'u/jilpefﬁf fz}lffl_l
Contractions with the metric Cy;(T) P T A vy —sovi_1m
Covariant derivative Vv X YV, X"
Total covariant derivative VX VX"
Lie derivative LxT LxTH "

Guidelines for reading

Since this thesis is both a master’s thesis in Mathematics and in Physics and Astronomy,
we give some guidance for reading this thesis. Both mathematics and physics are intimately
woven together in this thesis, so it is difficult to distinguish them. We also require quite some
knowledge from both areas. In particular, one should be familiar with differential geometry,
general relativity, spherical harmonics and partial differential equations.

From a mathematical perspective, the geometric Geroch—Hansen formalism is most appealing.
For a rigorous approach to geometric multipole moments in full generality including matter,
one would have to read Chapters 2, 3 (possibly except Section 3.3), 4, 7 and 9. The background
of these parts lie mainly in Lorentzian geometry and the theory of (elliptic) partial differential
equations. In the Thorne formalism, spherical harmonics play a central role. They appear in
Chapters 5, 6 and 8 and very briefly in Chapter 9.
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On the other hand, one may not need all (mathematical) details to understand the main
ideas behind the constructions of multipole moments. For that purpose, it is most likely
sufficient to read Chapter 2 up to Theorem 2.3 and Proposition 2.6, Section 3.1 and from
Chapter 4 onwards. In Section 4.3 and Section 7.2, a method to calculate multipole moments
in axisymmetric spacetimes is discussed. They can be skipped if one is not interested in
calculating multipole moments in such spacetimes.

List of new results

Since this thesis is reviewing, filling in gaps and developing some new parts, it can be difficult
distinguish the nature of each result. For most proofs in this thesis, they are either given
for completeness or to reformulate/clarify /simplify some parts. However, there are also some
new results and we correct a few mistakes in the original papers. The results of the latter
nature can be found in the following list:

e The proof of Proposition 2.8 is slightly different from the original paper by Garfinkle
and Harris [40] that may solve a mistake. See footnote 2 for more information.

e Theorem 3.3 is a correction of the wrong result by Geroch [42], see footnote 5.
e Proposition 4.10 and Corollary 4.11 generalise results by Beig [11].

e The multipole moments defined in Definition 7.6 can be seen as a slight generalisation for
electrovacuum where multipole moments are originally defined by Simon [102] because
we do not assume that the electromagnetic field is exact.

e In Chapter 8, we develop a new way to define multipole moments using physical intu-
ition. It is not supposed to be rigorous mathematical result.

e Everything, most notably Definition 9.3, in Section 9.2 is new.

11



Part 1

Geometric Setting
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Chapter 2

Stationary Spacetimes

We want our multipole moments to give a set of constants, independent of time. Therefore, we
restrict ourselves to equilibrium states. Such spacetimes are called stationary, and consist of
permanent geodesic motions. The goal of this chapter is to recall the definition and investigate
important properties of stationary spacetimes. The definition is recalled in Section 2.1. Time
symmetry allows us to quotient by the time direction and we want to analyse the resulting
three-dimensional space. This space is the so-called observer space, and is constructed in
Section 2.2. In Section 2.3, we define the twist covector field and discuss some important
properties. The twist covector field can be used to describe the dynamics of stationary
spacetimes. It allows us to reduce the Einstein equations to the three-dimensional observer
space, which is discussed in Section 2.4.

2.1 Definition of stationary spacetimes

In this section, we want to recall the definition of stationary spacetimes. The common defini-
tion for stationary spacetimes is that the spacetime must admit a timelike Killing vector field.
However, it depends on the source whether to assume this vector field is complete or not.
For example, completeness of the timelike Killing vector field is assumed in [70, 112], while
it is not in [25, 49, 90]. The difference between the two definitions is whether vector field
generates a one-parameter group action (or a global flow) on the manifold or not. Since this
one-parameter group action helps us to reduce our spacetime to a lower-dimensional space,
we include the completeness assumption.

Definition 2.1. A Lorentzian manifold is called stationary if it has a complete timelike
Killing vector field. Such a complete timelike Killing vector field is also called a stationary
vector field.

Such a stationary vector field is, in particular, a timelike vector field and induces a time
orientation. So, if we fix a complete timelike Killing vector field, we can always assume it
defines the time orientation and is future-directed.

Locally, the fact that a timelike vector field is nonvanishing implies that there is a coordinate
system with a coordinate ¢ such that % coincides with this vector field. If it is a Killing
vector field, the component functions of the metric tensor are independent of ¢. Conversely,

13



if we have a coordinate system such that the component functions of the metric tensor are
independent of a coordinate ¢, then % is a Killing vector on the domain of the coordinate
chart. To get a global vector field it should be checked that the local Killing vector fields
glue together on the overlap of two charts. The completeness assumption cannot be checked

locally.

The one-parameter group action induced by a (complete) stationary vector field has important
consequences. More on this in the next section, but one of them is that a stationary spacetime
is reflecting [78, Theorem 4.10]. That is, we have I~ (p) C I~ (q) if and only if I (q) C I'"(p)
for every two points p and q. Here, I*(p) is the subset of M consisting of points that can
be reached by future-directed timelike curves starting at p and I~ (p) is the subset of M
consisting of points that can be reached by past-directed timelike curves starting at p.

2.2 Observer space

In this section, we discuss the observer space, which is found by taking out the time direction.
First, we discuss the construction. We see that the observer space turns the stationary space-
time into a principal R-bundle, which carries a natural connection. For globally hyperbolic
stationary spacetimes, a smooth, spacelike Cauchy surface turns out to be diffeomorphic to
the observer space. At the end of this section, we identify the tensor fields on the observer
space with tensor fields on the spacetime and discuss three possible Riemannian metrics on
the observer space. Recall that we assume any spacetime is stationary and we let £ be a
stationary vector field.

Construction of the observer space

The one-parameter group action induced by a stationary vector field gives an R-action on
M and we can take the quotient. To ensure this space will be a manifold, we need another
assumption. A spacetime is chronological if there are no closed timelike curves. In the
setting of a reflecting spacetime, we can weaken this condition by demanding there exists a
point through which there is no closed timelike curve. Such a spacetime is called non-totally
vicious. We typically assume a spacetime is connected, and then a spacetime that is not
non-totally vicious would admit a closed timelike curve through any pair of two points [78].
In Theorem 2.3, we use the chronology condition, but we can equivalently assume that the
spacetime is non-totally vicious. The non-totally vicious condition is the lowest level on the
causal ladder [78], so it is quite remarkable we only need such a weak causality condition.

The one-parameter group action allows us to consider the orbits of this action, which are
the maximal integral curves of this fixed stationary vector field, seen as sets. The three-
dimensional space we want to consider is the set of maximal integral curves.

Definition 2.2. Let (M, g) denote a stationary spacetime with a stationary vector field &
whose global flow is 8. The observer space of (M, g) is the quotient of M under the R-group
action #. We denote the observer space of (M, g) by S.

It is called the observer space because an observer can move along the maximal integral curves
of £ and reach all points in M. To each point p € M, we can assign the unique maximal
integral curve of £ through p, defining a map n: M — S. This map is clearly surjective as
every integral curve goes through at least one point. It is the quotient map when viewing the
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observer space as a quotient under the one-parameter group action. In the category of sets
or topological spaces, it is clear that this works but quotients are not automatically smooth
manifolds. The goal of Theorem 2.3 is to prove that the set .S is a smooth manifold and 7
is a surjective smooth submersion, giving a quotient in the category of smooth manifolds. In
[42], it is basically assumed that this works. Locally, the situation is not too bad and the
chronology condition may even be dropped, but for a global result it will be very useful.

Theorem 2.3. Let (M,g) be a chronological, stationary spacetime with a complete timelike
Killing vector field €. Let S be the observer space, then S can be given a three-dimensional
smooth manifold structure such that the map w: M — S, mapping a point p € M to the
mazximal integral curve of & through p, is a smooth surjective submersion.

Proof. Since & is complete, it has a global flow 6: R x M — M which defines a smooth R-
action on M by t-p = 0(t,p). Each curve 6P = 0(-,p) is a maximal integral curve of &, in
particular it is a future-directed timelike curve because £ is timelike. We want the action to
be free, meaning we need that for each p € M, t- p = p implies t = 0. Suppose t1 -p =ts - p,
then without loss of generality we can assume that ¢; < t9, otherwise swap ¢1 and t5. Suppose
t1 < t9, then H(P)‘[tl oE [t1,t2] — M is a closed timelike curve, which is a contradiction with
the chronology condition. Therefore, we must have t; = t5 and the action is free.

So, we have a group acting smoothly and freely, and we also want it to act properly. To
prove it, we follow [33, pp. 1646-1647]. We use the characterization of a proper action using
sequence, which reads that the action is proper if for all sequences (p;)ien in M and (¢;)en
in R such that both (p;)ien and (¢; - pi)ien converge, (¢;);en has a convergent subsequence.
Suppose the action is not proper, then we can take a sequence (p;);cny in M and a sequence
(t;)ien in R such that (p;)ien and (¢; - p;)ien converge, but (¢;);en does not have a convergent
subsequence. Take p,q € M such that p; — p and ¢; - p; — q as ¢ — oo. By the Bolzano-
Weierstrass theorem, the sequence (t;);cn is unbounded. Without loss of generality, we can
assume that t; — oo by passing to a subsequence and the case that it diverges to —oo can be
discussed in the same way.

Let t € R and € > 0 be arbitrary. We write p < ¢ if there is a future-directed timelike
curve from p to ¢q. Then ¢t -p < (t + €) - p because 0P is a timelike curve. Since the
chronological relation I is open, we can take an open neighborhood U of (¢t +¢)-p in M such
that U C I (t-p). Also, (—¢) - ¢ < ¢, so we can take an open neighborhood V of (—¢) - ¢ in
M such that V' C I~ (q). By taking ip € N large enough, we have t; >t +2¢, (t +¢)-p; € U
and (t; —e) -p; € V for all i > ig. This gives

t-pL(t+e) pi<<(ti—e) pi<q,

where we used (t + ¢) - p; € U in the first relation, t; > ¢t 4+ 2¢ in the second relation, and
(t; —€) - p; € V in the last relation. So ¢-p € I~ (q) and since ¢ € R is arbitrary, we find that
the whole maximal integral curve of £ through p is contained in I~ (q).

To arrive at a contradiction, we follow [51, p. 34]. Since a spacetime is connected, there exists
a smooth curve o: [0,1] — M such that 0(0) = ¢ and o(1) = p. Let a: R x [0,1] — M be
defined by «(t,s) =t - o(s), then da(%) = { o« and we define X = da(%). We can take
a constant ¢ > 0 large enough such that the vector c{,(o,s) + X(0,5) is timelike and future-
directed for all s € [0, 1]. Note that we use compactness of [0, 1] for this constant ¢ to exist.
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Then,
Eats) T X(t.5) = d(0r) (cEato,s) + X(0,5))

where we used that (6; o a)(t',s) = a(t’ +t,s), so d(0;)dag ) = d(0; o), = doys)-
Since ¢ is a Killing vector field, 6; is an isometry, preserving the causal structure. Therefore,
Ca(t,s) T X(1,5) 18 still future-directed and timelike for all ¢ € R. Let v be the integral curve
of c€ o v + X starting at ¢, then v(¢) = a(ct,t) for t > 0. So, 7 is a future-directed timelike
curve from v(0) = ¢(0) = ¢ to ¥(1) = ¢ - p. Hence, c-p € I (q), but above we found that
c¢-p € I"(q). But then there is a closed timelike curve by concatenating the future-directed
timelike curves from c- p to ¢ and from ¢ to ¢ - p. This contradicts the chronology condition,
so the action must be proper.

Therefore, M /R can be given a unique smooth manifold structure such that the corresponding
quotient map is a smooth surjective submersion [72, Theorem 21.10]. Here, M /R consist
precisely of the orbits of the flow, which are the maximal integral curves of £. So, S = M/R
is a smooth manifold and the quotient map 7: M — S is a smooth surjective submersion.
Finally, the dimension of S is dim S =dim M —dimR =4 -1 = 3. 0

A more general version of this theorem is proven by Harris [49, Theorem 1]. He works with a
conformal Killing vector field instead of a Killing vector field. One can even drop the “Killing”
assumption, then we end up with a so-called near-manifold. A near-manifold is a topological
space that is locally Euclidean and second-countable, but it does not have to be Hausdorff
[49, Theorem 2.

In the proof of the theorem above, our choice for a complete timelike Killing vector field
becomes clear. We make crucial use of the one-parameter group action induced by £. We
want to understand this completeness assumption a bit better. By the uniform time lemma,
a vector field is complete if and only if there exists € > 0 such that the domain of the flow
line starting at p contains (—¢,¢) for all p € M [72, Lemma 9.15]. The crucial part in this
result is that € does not depend on the point p. In a vacuum, maximal globally hyperbolic
spacetime, it suffices to check this around a Cauchy surface. More precisely, in a vacuum,
maximal globally hyperbolic spacetime with Cauchy surface 3, a Killing vector field X is
complete if and only if there exists € > 0 such that the flow 0(¢,p) of X is defined for all
t € (—e,e) and p € ¥ [29, Theorem 1.1]. This result can be applied to the vector field &.
Other assumptions that imply completeness of a timelike Killing vector field in a stationary
spacetime are timelike and null geodesic completeness [40, Lemma 1].

Stationary spacetimes as principal R-bundles

The proof of Theorem 2.3 also implies that w: M — S is a principal R-bundle. We want
to understand this principal bundle a bit better. Since the fiber of the principal bundle is a
Euclidean space, it is trivial [65, Theorem 1.5.7]. The proof of this result relies on algebraic
topology. It means that there is an isomorphism of principal R-bundles between 7: M — S
and the projection R x S — S. Alternatively, we can view it as a global section of m. The
Lorentzian metric g on M naturally endows the principal bundle with a connection.

Proposition 2.4. Let (M,g) be a stationary spacetime with stationary vector field £ and
observer space S. Let m: M — S denote the canonical projection. Then the orthogonal
complement of Ker dm with respect to g is a connection on the principal R-bundle m: M — S.
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Proof. We already have the metric g on M. Let 6; denote the action by t € R, then (6;)*g = g
because £ is a Killing vector field, so the flow acts by isometries. Since dm, vanishes on ¢, it
clearly restricts to an isomorphism between (Ker dr,)* and T,,9, so (Ker dr)* is a horizontal
distribution. Let v € (Kerdm,)*, then g,(v,&,) = 0. Since @ is the flow of &,

A(0,),(&,) = d(e»p((e(m)’(o)) 4

S

d
8:09(t¢9(s>p)) = % 8:09(579(t7p)) = gt-p-

Therefore, we have

Gep(d(0)p(v), §tp) = ((01)"9)p(v,&p) = gp(v,&p) =0,

so d(0;),(v) € (Kerdm,):. Hence, d(6;), restricts to a linear map between (Kerdm,)* and
(Ker dmy.p)*, which is injective because d(6;), is an isomorphism between T, M and T}, M.
By dimensionality, d(6;),: (Kerdm,)t — (Kerdm:,)* is an isomorphism, so (Ker dr)t is an
invariant distribution. Hence, (Ker drr)* defines a connection on 7: M — S. O

Alternatively, a connection can also be defined by a one-form. In that case, we want to
consider the one-form o = —\~1¢” on M, where A = —g(¢&,£). Clearly, Ker fzb, = (Kerdm,)*,
showing this one-form corresponds to the horizontal distribution (Ker dﬂ'p)l. To see that «
is indeed a connection on the principal R-bundle 7: M — S, we need that it is invariant
under the group action and reproduces the Lie algebra generators of the infinitesimal action.
Since £ is a Killing vector field, we have L¢g = 0 and we trivially have L€ = [£,€] = 0, so
we see that L¢A = 0. Moreover, raising and lowering indices commutes with L£¢ because ¢ is
a Killing vector field, so we also have L (ﬁb) = (ng)b = 0. But then we see that Lea = 0,
so (0y)*a = « and « is invariant under the group action. The infinitesimal action of 6 is
p: R — X(M) given by

d

0, = (o), (x 3| ) =x(") @ =xe

t=0
SO

g(&, )
9(&,¢)

Therefore, « is indeed a connection one-form for our principal R-bundle, so it is the connection
one-form corresponding to the connection from Proposition 2.4. Since we assume we are given
a metric g on M, the connection is canonical in the sense that it arises naturally from the
metric.

ipxyr=—A"1g(¢, X¢) =X

The canonical connection also comes with its related curvature. Since R is an abelian group,
the curvature is just da € Q*(M), where a = —A\"'¢”. We know from the curvature of a
principal bundle that it is a basic two-form, so it reduces to a two-form K on S satisfying
m* K = da. We can also check directly that da lives on S. Since the Lie derivative commutes
with the exterior derivative, we have

£5da = dﬁga =0.

We also want to calculate contractions of da with £. By antisymmetry of do it suffices to
consider only the contraction in the first index, for which we have

(igda)(X) = da(§, X) = {(a(X)) = X(a(§)) — a([¢, X])-
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For the second term, we note that a(&) = 1 is constant, so X (a(§)) = 0. Using that LA =0
and torsion-freeness and metric-compatibility of the Levi-Civita connection, we also have

E(a(X)) = £(=A""g(&, X)) = =27 (9(Ve&, X) + (€, VeX))
= -2l [6 X]) = AT (9(Veg, X) + g(€, VxE))
= a([§, X]),

where we used that ¢ is a Killing vector field to conclude that g(Vx&,Y) + g(X, Vy€) = 0.
But then we see that i¢da = 0, and da is a basic 2-form on M. Hence, it is related to a
two-form K € Q%(S) such that 7*K = da.

The curvature K is closed because 7*(dK) = d(7*K) = d(da) = 0 and 7 is a surjective
smooth submersion so the pullback is injective. Hence, we can consider its equivalence class
in the second de Rham cohomology [K] € H32;(S). This is a characteristic class, which is
known to be independent of the connection. Since 7: M — S is a trivial principal bundle, it
can be given the trivial connection and then the curvature vanishes. But then the fact that
the characteristic classes are independent of the connection tells us that [K] = 0 € H2;(95).
In other words, K is an exact one-form on S.

Observer space and Cauchy surfaces

The observer space S contains a lot of information about the topology of the spacelike part
of M. Any edgeless, achronal, embedded spacelike hypersurface in M is diffeomorphic to S
[40, Theorem 3|. In particular, if M is globally hyperbolic, a smooth spacelike Cauchy surface
is diffeomorphic to S. The smoothness of the Cauchy surface is not an extra condition on
(M, g) as any globally hyperbolic spacetime admits a smooth spacelike Cauchy surface [14].
It is easy to prove directly that the observer space is diffeomorphic to a smooth spacelike
Cauchy surface:

Proposition 2.5. Let (M,g) be a globally hyperbolic, stationary spacetime with a smooth
spacelike Cauchy surface ¥ and observer space S. Then ¥ and S are diffeomorphic.

Proof. A globally hyperbolic spacetime is, in particular, chronological so Theorem 2.3 tells
us that S is indeed a three-dimensional manifold. A Cauchy surface X is embedded in M, so
we can restrict w to . Let v € S, then it is a maximal integral curve of a complete timelike
Killing vector field £. In particular, it is an inextendible timelike curve, so it intersects X
exactly once. Therefore, 7|y : X — S is a smooth bijection. Let p € ¥ and suppose we have
v € T, C T, M such that dm,(v) = 0. Then v = a&, for some a € R because Ker dm, = RE,,
but v cannot be timelike as v € T,3. Therefore, we must have a = 0 and v = 0, so
dﬂp\TpE: T,% — T,S is injective. Therefore, 7|y, is a smooth immersion, and dim ¥ = dim S
implies that 7 is a local diffeomorphism. Bijectivity tells us that 7|y is a diffeomorphism. [

Tensor fields and metrics on the observer space

Up to now, we only know that S is a three-dimensional smooth manifold, but we also want
to endow it with a Riemannian metric. To do so, we need to understand the tensors on S.
This is solved by the following proposition due to Geroch. It has the same spirit as the fact
that basic differential forms on a principal bundle live on the base space.
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Proposition 2.6. Let (M, g) be a stationary spacetime with stationary vector field & and with
observer space S. There is a C*(S)-module isomorphism between the set of tensor fields T’
on S and the set of tensor fields T' on M such that LT = 0 and all possible contractions
between T and & vanish. Moreover, the correspondence commutes with tensor products and
contractions.

Proof. See [43, Appendix| or Appendix A. O

Recall that we defined a scalar field A on M as the norm

A= —g(£8). (21)

It looks pretty simple but it is a very important object for defining multipole moments because
the mass of the system is residing in A. It satisfies L¢A = 0 because ¢ is a Killing vector field
and commutes with itself, so Proposition 2.6 tells us that A can be seen as a scalar field on
S. More precisely, there is a smooth function X € C*°(S) such that 7*\ = \.

Another important tensor field is the covariant 2-tensor field defined by
h=X+E& €. (2.2)
As the following proposition shows, it turns out to reduce to a Riemannian metric on S.

Proposition 2.7. Let (M,g) be a stationary spacetime with stationary vector field £ and
with observer space S. The covariant 2-tensor field h on M defined by (2.2) corresponds to a
Riemannian metric on h' on S via Proposition 2.6.

Proof. We already know that LeA = 0, L ({b) = 0 and L¢g = 0, so we also have L¢h = 0.
Moreover,

h(f,X) = )\Q(E,X) +g(§7£)g(§7X) =0,

for all X € X(M), so the contractions of h with & vanish. Therefore, h can also be seen
as a covariant 2-tensor field A’ on S defined by 7#*h’ = h. Since h is symmetric, h’ is also
symmetric. We want to check that h’ is positive-definite. Let z € S and v € T,.5, then we
can take p € M and v € T, M such that x = w(p) and v = dmp(v). Then we have

hy(0,0) = (7°1) ,(v,0) = hp(v,0) = A(p)gp (v, v) + gp(&p: V) 9p(p, v)-

Extend ey = ﬁfp to a basis (eg, e1, €2, e3) of T, M such that g,(e,,e,) = 1y and expand
P

v = vte,. Then we get
h;(ﬂ, v) = A@)““UV(WW + 770u7701/) = )\(p)vivjdz‘j-

Since A(p) > 0, we see that this is non-negative. Suppose it is zero, then we must have
vl = v? =03 = 0, so v is proportional to &,. But dm,(&,) = 0 because 7 is constant along
the integral curves of &, so this gives v = dmp(v) = 0. Therefore, h/, is indeed positive-definite
and i’ is a Riemannian metric on S. O

The metric determined by equation (2.2) may not be the most natural one on S. We can

rescale h with a conformal factor, giving a new metric. There are three somewhat natural
choices:
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1. The metric A’ on S satisfying 7*h’ = h, where h determined by equation (2.2);
2. The conformal metric N ~1A’;
3. The conformal metric \'2A’.

In the proof of Proposition 2.6 in Appendix A, we used the second choice. For v,w €
(Ker dmp)*, this metric satisfies

(V1) (0,0) = M) (A)gp(v. ) + E40) @ ) = gy(0,0),

because 5;,(1)) = gp(&p,v) = 0 for v € (Kerdm,)*. Therefore, this metric turns 7 into a
pseudo-Riemannian submersion from (M, ) to (S, Ny ), thus it is the most natural metric
on S when we view it is a quotient space of M.

The third suitable metric is A'~2h/, which has a nice property. If we assume that (M, g) is
globally hyperbolic, then the Riemannian manifold (S, N2 ) is complete [40, Theorem 8§].
We know that for any Riemannian manifold there is a conformally related metric turning
it into a complete Riemannian manifold. In this case, the result already gives us such a
conformally related metric. We repeat the result here with a small correction in the proof.?

Proposition 2.8. Let (M, g) be a globally hyperbolic, stationary spacetime, with the Rieman-
nian manifold (S,N~2h') as constructed above. Then (S,N2K') is a complete Riemannian
manifold.

Proof. By Theorem 2.3, the observer space S is a smooth manifold and 7: M — S a smooth
surjective submersion. Above we already saw that h = X ~2h’ is a Riemannian metric on S.

We want to show that (S, ?L) is geodesically complete. Let «y: [0,L) — S be a unit-speed

geodesic in S with respect to h, and take a point p € M such that m(p) = v(0). Then there
is a unique smooth curve o: [0,L) — M that horizontally lifts v, meaning m o 0 = « and
o'(s) € (Ker d?TU(s))L, because m: M — S is a principal bundle and we endowed it with a
connection [82, Theorem 10.2].

Let F': R x [0,L) — M be given by F(t,s) =t-o(s). Then

0
dF(to,So) (815

) = §t0-0(50)7 (23)
(to,s0)

and

AF (1350 (f ) = d(B1) () (0 (50)). (2.4)

We have o/(sg) € (Kerdm,(s,))*, which implies d(64))o(s0)(07(s0)) € (Kerdmy.o(s9))> by
Proposition 2.4. The vectors (2.3) and (2.4) are nonzero because 7/(sg) # 0, non-null and they

(to,s0)

* In [40], it is assumed that P =, )7 ' (0(t)) in the proof of Proposition 2.8 is a submanifold of M.
It is not clear to me whether this is always true. In general, geodesics can intersect themselves as is the case
on a cone for example. Luckily, we do not need that P is a submanifold of M in this proof.
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are orthogonal, so they are linearly independent. This shows that F' is a smooth immersion.
Moreover,

i 0 0 _
F ()\ 1g)<at at>(t0780) ()\(tOU(SO))) 19t0~0’(50)(§t0~0’(80)7gt()'O'(So)):_17

FO19) (g 55 ) 0050) = (A0 0 (50 ) Gt Aoy (07 (50)) = 0,

P10 (g1 1 ) 50) = (3000 0(500) ) (008 ) (0 (500 B3 ) (& 50)

)
= (((016)" M) ((50))) ™" ((B1)" 950 (0" (50), 0" (s0))
= (M(50))) 9o (s0) (0" (50), 0" (s0))

Now, dmp(0'(s0)) = 7'(s0) and the fact that v has unit speed gives E,Y(SO)(’}//(S()),’)//(S())) =1.
Hence, using that o'(sg) is orthogonal to &, (s

(M@ 50)) ™ 9o(so) (07 (50), 0" (50)) = (x°B) | (0"(50), 0 (50)) = oy (3 (50), ¥ (50)) = 1.

So, on Rx [0, —L) we find that F*(A\~1g) = —dt?>+ds?. Let x = (—2L)-pand y = (2L)-p. Then
we have z = F'(—2L,0) and y = F(2L,0). Let ¢ty € [0, L), then F(0,t) = p and we clearly have
T < p < y. Suppose tg > 0 and define the curve f: [0,1] — Rx [0, L) by f(t) = (2L(t—1), tot)
and f'(t) = (2L,tp). Then F o f is a curve in M with (F o f)'(t) = dFyu (f'(t)) and

AEFON ™ griay (Fof)' (1), (Fo f) (1)) = (F*(X9)) i (f'(8), f'(1)) = —(2L)* +£5 < 0.

Since A is positive, this shows that F o f is a timelike curve in M. Hence, x < o(ty), and
similarly we have o(ty) < y. Hence, o is a curve that lies entirely in the causal diamond
J(z,y) = JT(x)NJ(y). By global hyperbolicity of M, this is compact. But then there must
be a point ¢ € J(z,y) such that lim; », o(t) = q. Then we also have lim; ~;, v(t) = 7(q), and
hence v is extendible. This proves that (S, k) is complete. O

It would be interesting to know whether Proposition 2.8 can be reversed. In general, that is
not possible, but it can be done with some extra assumptions. First, we need to assume that
the observer space is a manifold, for which it is sufficient to assume the spacetime (M, g) is
chronological or non-totally vicious as we saw above. We call (M, g) future-distinguishing if
It(p) = I'"(q) implies p = q. Moreover, we call (M, g) causally bounded if 7(I*(p) NI~ (q))
is bounded in (S, )\’_Qh’) for every p,q € M. If (M, g) is globally hyperbolic, then it is easy
to check that it is future-distinguishing and causally bounded. Conversely, if the observer
space S is a manifold such that 7 is a surjective smooth submersion, and (M, g) is future-
distinguishing, causally bounded, and (S, N=2p/ ) is a complete Riemannian manifold, then
(M, g) must be globally hyperbolic [50, Theorem 2.15].

Even though the other options may seem more natural, we will stick to the metric h’ deter-
mined by equation (2.2). This metric is most useful when invoking the Einstein equations
[32, 43] as we will see in Section 2.4. In this metric on S, the measuring instruments are scaled
to agree with the interval between pulses of light emitted “at infinity” with a prearranged
frequency [48]. For a stationary spacetime, we can locally take coordinates (¢, z!, 2%, 23) such
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that % = ¢ and the coordinate representation of 7w is the projection onto the last three
components for some coordinates (y',y?,%%) on S. Then the metric looks like

g = —\dt — oydx")* + Nty datda?

where ), 0; and ;; are smooth functions that are independent of ¢. In these coordinates, the
tensor h on M looks like hgg = hg; = 0, and

hij = /\()\_1’)@7‘ — )\Uin) + )\QO'Z'JJ' = Yij-

So, the component functions of h are independent of ¢, and h;j = ’y;j, where 'yz’»j is determined
by Tr*%fj = ;;. That is, %fj is the same as 7;; but we do not understand t as a variable
anymore. They serve as the component functions of the Riemannian metric on S.

2.3 Twist covector field

The goal of this section is to define a crucial ingredient for the multipole moments. The twist
covector field contains a lot of information about the dynamics of the spacetime. The main
result of this section is to calculate the exterior derivative of the twist one-form, and show
that the twist one-form is closed in a vacuum solution of the Einstein equations. Remember
that (M, g) is a stationary spacetime with stationary vector field £ and observer space S.

Definition of the twist covector field

Definition 2.9. Let (M, g) be an orientable, stationary spacetime with stationary vector
field £. Then the twist covector field w € Q(M) is defined by

cu:_*(éAdé) (2.5)
where * denotes the Hodge star operator. In abstract index notation, this reads

Wy = 5uyp0'§l/vp‘§a :

Alternatively, we can also write
w = —ig x dE’.

The one-form w is called the twist covector field of £. We have w = 0 if and only if £ AdE® = 0,
which holds if and only if Ker & = (R¢ )J‘ is an involutive distribution on M. So, we see that
w = 0 if and only if £ is a static vector field for (M, g), where a static vector field is a
stationary vector field whose orthogonal distribution is involutive. An involutive distribution
corresponds to a foliation, and here it gives a foliation whose leaves are orthogonal to £&. A
spacetime (M, g) admitting a static vector field ¢ is called static itself. The twist covector
field measures the failure for a stationary vector field to be a static vector field.

It is clear that i¢w = 0 because *d€” is a two-form, so Lele * d¢” = 0. Moreover, Leg =0 and
the divergence of a Killing vector field vanishes, from which we see that the Lie derivative
with respect to { commutes with the Hodge star operator. Moreover, L€ = 0 gives L ({b) =
(Eg{)b = 0 because £; commutes with raising and lowering. Then we also have L (dfb) =
dLe¢ (fb) = 0, and we conclude that L¢w = 0. Therefore, w reduces to a covector field on S by
Proposition 2.6. More precisely, there exists «w’ € Q2(S) such that 7*w’ = w.
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Exterior derivative of the twist one-form

In a vacuum solution of the Einstein equations, the twist covector field turns out to be a closed
one-form. The remaining part of this section is devoted to calculating the exterior derivative
of the twist one-form. First, recall that the Riemann curvature tensor is a (1, 3)-tensor field
on M defined by

(X,Y,Z) = R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z.

Here, V denotes the Levi-Civita connection. We can also lower the last index, giving the
(0,4)-tensor field Rm defined by

Rm(X,Y,Z,W) = g(R(X,Y)Z,W).

Both tensors are called the Riemann curvature tensor. Contracting the first and last index
gives the Ricci tensor
Rc = 014(R'm).

We can express the exterior derivative of the twist one-form in terms of the Ricci tensor. To
do this, we use the Kostant formula [66].

Lemma 2.10 (Kostant formula). Let (M, g) be a pseudo-Riemannian manifold with a Killing
vector field &. Then
Viyé = R(X, €)Y, (2.6)

for all X, Y € X(M), or, equivalently,
(V2) (Zb,Y, X) = Rm(X,¢,Y, Z), (2.7)
forall X,Y,Z € X(M).

Proof. A proof in abstract index notation can be found in [112, p. 442]. We will prove it in
the mathematical, global notation used in the statement of the lemma itself.

Let X,Y,Z € X(M). Since ¢ is a Killing vector field, we have g(Vx&,Y) + g(X,Vy&) = 0.
Taking the derivative of this equation along Z gives

9(VzVxEY) +9(VxE,VzY) + g(V2X,VyE) + 9(X,VzVyE) =0,

where we used that the Levi-Civita connection is compatible with g. Cyclically permuting
X, Y and Z also gives the equations

9(VyVzE X) +9(VzE,VyX) +9(VyZ,VxE) +9(Z,VyVxE) =0,

and
I(VxVy&, Z2) +g(VyE,VxZ) + g(VxY,VzE) + g(Y,VxVzE) = 0.

Adding the last two equations and subtracting the first one, gives

9(VyVzE=VzVvE, X)+9(VyZ —VzY,VxE) +9(VxVz£ —VVxEY)
+9(VxZ = VzX,Vy&) + g(VxVyl+ VyVxE Z) + g(VxY + Vy X, VzE) = 0.
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Using that the Levi-Civita connection is torsion-free and the vector field € is a Killing vector
field, we find

9(VyZ = VzY,Vx§) = g([Y, Z], Vx§) = —9(V}y 2§ X).
Moreover,

9g(VxY +VyX,Vz) = —g(Vvyvé + Vv, x§, 2).

Therefore, we find
Rm(Y,Z,&,X) + Rm(X,Z,6,Y) + g(Viy&+ V3 x&, Z) = 0.
Together with the symmetries of the Riemann curvature tensor, this gives
9(Viy€ + Vixé, Z) = Rm(X,6,Y, Z) + Rm(Y, £, X, 7).
Since this holds for all Z € X(M), we also have
Viyé+ Vixé = R(X, Y + R(Y, ) X.
The Ricci identity tells us that [73, Theorem 7.14]
Viy€— Vixé=RX,Y)E
Therefore, we have
2VA v€ = R(X, Y + R(Y, )X + R(X,Y)¢ = R(X,§)Y — R(§, X)Y = 2R(X,£)Y,
where we used the algebraic Bianchi identity. This proves the Kostant formula in the version
of equation (2.6). Applying Z° gives equation (2.7). O
Eventually, we need an expression for the Laplace-Beltrami operator on £. We denote the
Laplace-Beltrami operator on any tensor field by [, and we define it by
0,7 = V'V, T,

in abstract index notation. Since g is a Lorentzian metric, the Laplace-Beltrami operator is
a wave operator. For a Riemannian metric A, the induced Laplace-Beltrami operator is an
elliptic partial differential operator, and we denote it by Aj,. To find (4§, we want to contract
X and Z in equation (2.6), giving the following corollary.

Corollary 2.11. Let (M, g) be a pseudo-Riemannian manifold with a Killing vector field &,
then

for all W € X(M).
Proof. By the symmetries of the Riemann curvature tensor, we can rewrite equation (2.7) as
(V%) (Wb, Z, X) — Rm(X,£,2,W) = —Rm(X, £, W, Z).
Contracting X and Z gives
908, W) = (046 (W*) = —Re(&, W),

proving equation (2.8). O
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Using Lemma 2.10 and Corollary 2.11, we are able to find an expression for the exterior
derivative of the twist one-form. In particular, we want the exterior derivative to vanish
when (M, g) solves the Einstein equations in vacuum. From Corollary 2.11, we already see
that the Laplace-Beltrami operator on a Killing vector field vanishes in a solution of the
Einstein equations in vacuum, because the Ricci tensor vanishes in that case.

Theorem 2.12. Let (M, g) be a stationary spacetime with timelike Killing vector field . Let
w denote the twist covector field of &, then

dw = 2i¢ * Re(€, ) = —2 % (gb A Re(€, -)). (2.9)

Proof. A proof in abstract index notation can be found in [112, p. 164], but we take a different
approach via the Weitzenbdck identity. We have

dio = —dig x € = —Le(+d€”) +igd » dE”.

Since ¢ is a Killing vector field, the Lie derivative along £ commutes with the Hodge star
operator. Hence, for the first term we have

Le(xde’) = e (d’) = xace (&) =0,

and we are left with
dw = igd % d€°.
Since d * d&” is a 3-form on M, M is 4-dimensional and g has Lorentzian signature, we have
d*de® =%« dx*de. Let Df = xd * d + d * d* denote the Hodge Laplacian on (M, g), then
dw:igd*dgb :ig**d*dfb :ig*fob—ig*d*d*fb.

We know the divergence of a Killing vector field vanishes, which gives dice = 0. But then we
also have d * & = 0, and we are left with

dw = i¢ * fob.

Using the Weitzenbdck identity [89, Theorem 9.4.1], we can relate the Laplace-Beltrami op-
erator with the Hodge Laplacian via

O'¢” = ~0g€ + Re(€, ) = 2Re(€, ). (2.10)

We used Corollary 2.11 in the last equality, combined with the fact that [J, commutes with
raising and lowering because the connection does. Substituting (2.10) in the expression for
dw proves (2.9). O

In a vacuum solution of the Einstein equations, the Ricci tensor vanishes, so we easily see
from Theorem 2.12 that dw = 0. Since w lives on S, there is a one-form w’ € Q!(.9) such that
m*w’ = w. Then we have

7 dw = dr*w' = dw = 0.

Since 7 is a surjective submersion, the pullback is injective and we must have dw’ = 0. So, the
twist covector field is also closed on S. Then we can locally always find a primitive function
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f! such that w’ = df’. We call f’ the local twist potential. If U is the domain of f’, then
we can also define f on 7~ 1(U) C M by f(p) = f'(r(p)), and we easily see that w = df on
7~1(U). The smooth function f is also called the twist potential. For the multipole moments,
we are interested in what happens at infinity in the observer space. We can also take the
twist potential around infinity, but then we first need to define asymptotic flatness in 3.

2.4 Einstein equations

In this section, we want to translate the Einstein equations to S [13, 43]. Remember that
(M, g) is a stationary spacetime with stationary vector field £ and observer space S and twist
covector field w. At the end of Section 2.2, we saw three metrics on S. We said that we will
use the one corresponding to h given by (2.2), but in this section (and only in this section!)
we also need

h=XATth=g+1'¢®¢.

We denote their counterparts on S by B’ and k’, respectively, so 7*h’ = h and ©*h = h.
The Levi-Civita connection on (S,h') is denoted by D and we write D for the Levi-Civita
connection with respect to K. On (M, g), the Riemann curvature tensor and the Ricci tensor
are denoted by Rm and Rc, respectively. On S, we write Rm’ and Rc’ when working with A/
and we write Rm and Rc when working with h’. We start this section with a brief discussion
on constructing stationary spacetimes from the observer space. After that, we derive some
identities on M, which allows us to translate the Einstein equations to S.

Constructing stationary spacetimes

Given a three-dimensional manifold with some data, it is possible to construct a stationary
spacetime (M, g) that is a solution of the Einstein equations in vacuum and such that the
original space is the observer space. This is a result by Geroch [43]. The data must consist
of a manifold S with a Riemannian metric A/, a positive scalar field A’ and a closed covector
field o’ (or its potential) such that

. 3.,
divy, w' = 5)\’ w' (gradz, \'), (2.11a)
AN = It an - N (2.11b)
h/ 2 hl h/7 .
~ 1 N1 1
Re = X7 (w' D — o %,h’) +SXTIDIA - NN @ (2.11c)

Here, div;, denotes the divergence with respect to 1’ and can alternatively be written as
divy, w' = ﬁzwl’ To construct the spacetime, take a chart (20 = ¢, 2!, 22 23) such that & =
0/0t. Tt follows from the (2.11b) that Ry vanishes, closedness of w’ implies that R;o vanishes
and the (2.11c) tells us that R;; vanishes. We will not discuss more about the construction;
more details can be found in [43]. A similar construction can be done in electrovacuum [32].

We can also take the opposite path (and that is what we want to do here). We start with a
spacetime (M, g), and then we calculate divs, W, Az, A and Rec. Then we get

divy, w' = g)\’_lw’(grad~, N, (2.12a)
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1
AN = _N7HaX
2

~ 1
Rc = 5)\’*2 (w' Rw — ‘w/

2 — 2
= = N5, + 2p, (2.12b)

27 1 —1 2 1 1—2 3\/ /
E,h) + X TID - X2 @ X + R, (2.12¢)

where p is a function on S determined by pom = Re(¢,§), and R is a covariant 2-tensor field
on S determined by (7*R),,,, = hjh] R,s. Here, hj, is given by

B = " Py, = 00 + N7EPE,,

and R should be seen as the projection of the Ricci tensor on M onto S. Comparing (2.11)
and (2.12), we get indeed that p = 0 and R = 0 as is needed in vacuum. These equations
contain all information about the Ricci tensor together with equation (2.9). Expressing the
Ricci tensor for (M, g) in terms of the stress-energy tensor and its trace translates the Einstein
equations to S. The remainder of this section serves to prove (2.12) and to perform a conformal
transformation to the metric & instead of k’. We do it in three steps. We start with calculating
divgw and OgA on M. After that, we turn to (S, ') and the last step is to replace b’ by k.
Some identities on the spacetime

We start with deriving the divergence of w and Laplace-Beltrami operator on A on (M, g).
From the fact that ¢ is a Killing vector field, we know that V&” is antisymmetric and d¢” =
—2Ve€". From equation (2.5) we get, using that Ly (5") =0,

*(gb A w) = ek w =g (gb A d§b> — M — € Nigde” = —\dE” — € Ad.

Therefore,
1 1
Ve = —2deh = ox7! (* (gb A w) T A d>\>. (2.13)
This equation allows us to calculate divyw and CgA.

Lemma 2.13. Let (M, g) be a stationary spacetime with a stationary vector field § and let w
be the twist covector field of &. Then the divergence of w is

divgw = 2A"'w(grad, A). (2.14)

Proof. Since the Levi-Civita tensor is parallel with respect to the Levi-Civita connection, we
see that Vx commutes with the Hodge star operator. This gives

Vxw = — # (vxgb AdE + € A vxdgb). (2.15)
For the second term we find
Vx (dfb) (Z,Y) = —% (v%b) (Z,Y,X) = Rm(X,€,Y,Z) = Rm(Y, Z, X, €),
using Lemma 2.10. The algebraic Bianchi identity implies that

> (sgn o) Bm(X 1), Xo(2), Xo(3),€) =0,
oES3

27



from which we find
Cia ((X, Y) s — (* (gb A degb»(Y)) —0.
For the divergence of w, we are only left with
divyw = Cly ((X, Y) s — (* (vxgb A dgb)) (Y))
- 012(()(, Y) s —2(*(@( (vgb) A Vfb))(Y)>
= 1 ((X, Y) e — (* (iX (vgb A vgb)))(y)).

Substitution of (2.13) yields

VEAVE = ix% (5Mw) A*(gbAw) +%x2* <§b/\w> AE AdA

For the first term, observe that
b b _¢b b _ o ¢h b —
*<§ /\w) /\>|<<§ /\w) =& NwAxx <§ /\w) =—&ANWANE Aw=0.
For the second term,
*<§b A w) A f" ANdA = —)\w(gradg )\)6,
where grad, A = (d\)* and ¢ is the pseudo-Riemannian volume form. Hence,
x(ixe) = * * XP = X",
and the trace of (X,Y) — X°(Y) = g(X,Y) equals 4. This gives equation (2.14). O

Lemma 2.14. Let (M, g) be a stationary spacetime with a stationary vector field £ and let
A= —g(§,&). Then applying Laplace-Beltrami operator to A gives

OgA = A YdAZ = A Hw|? + 2Re(€,€). (2.16)
Proof. For the Laplacian of A, we have
OgA = C12((X,Y) = Vi yA),

where

ViyA = Vx(VyA) = VoA = =2V (9(VyE€, €)) + 29(Vv v §)
= —29(VXy&,€) — 29(VyE, V).

Using Corollary 2.11, taking the trace for the first term gives
Ci2((X,Y) = =29(VX y€,€)) = —29(04€, €) = 2Re(&, £).

For the second term, we use equation (2.13) and observe that we get a full contraction of Ve
with itself. Since £(\) = dA\(€) = 0, w(£) = 0, and contractions of *(£” A w) with £ vanish, we
get

Cia((X,Y) = ~29(VyE, Vx€)) = A7 HdA[g = Ay,

This gives equation (2.16). O
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Einstein equations on the observer space

The next step is to calculate the divergence of w’ and the Laplace-Beltrami operator on \
on (S, n ) Then we need to know how the Levi-Civita connections are related. Let X be a

smooth vector field on S, then by Proposition 2.6 there is a smooth vector field X on M such
that dm, ()?p> = Xy (p) for all p € M that is orthogonal to . Since 7 is a pseudo-Riemannian

submersion to S with respect to N’ ~'h’, we have [86]
- \H - - -~ 1r~ ~1V
DxY = (V);Y) :V;(Y—I—)\_lg(g,v)?Y)&’:V)}Y—§[X,Y} .

Here, the subscript H means taking the horizontal part and V the vertical part. Let Z be
a vector field on M, then we can decompose Z as Z 4+ ZV with ZV = —\"lg(¢, Z)¢ and
ZH =7 —ZV. Then ZH and ZV are also smooth vector fields on M, but Z" is vertical and

9(&2") =g(&,2) + XN 'g(£, 2)9(6,€) = 9(&, Z) — g(£,Z) = 0,

so ZH is horizontal. Take coordinates (t,xl,xQ,x?’) for M and (yl,y2,y3) for S such that
&= % and the coordinate representation of 7 is the projection onto the last three components.

Given a vector field X = X* agi on S, we have X = XO% + (Xi o 7T) 8‘; on M for some smooth
function X0 to make sure X is orthogonal to £. In particular, X0 = AL (Xi o 7r). Hence,

we can write

(Div?) om = A1GVEYT + VY7 = (8 + A1)V, 77 = BV, V.

This allows us to calculate the divergence of w’ and the Laplace-Beltrami operator_on N.
Using the Levi-Civita connection above, we first do the calculation with respect to K, and
then with respect to h’ using a conformal transformation as h' = XN'h’.

Lemma 2.15. Let (M, g) be a stationary spacetime with observer space S and twist covector
field W' on S, then we have
divyy W’ = 2XN 1w/ (grad, \'), (2.17)
Proof. We have
(divy, o) om = (D) o = (3 + AT €i8") Vo' = Vi’ + A1 V!
= Vw0t + A1, Vew! = divyw + A1 (Vew) (6).
Substituting X = ¢ in equation (2.15), we see the second term vanishes by the symmetries

of the Riemann curvature tensor. So, we only need to take care of the first term and by the
same calculation as before we have

Vew = — * (vggb A d§b> = —x (ig (vgb A vgb)) - %)\_lw(gradg NE.
So, using (2.14), we have

(divy, w') o = 2)\_1w(gradg A) — %)\_lw(gradg A) = g)\_lw(gradg A).
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This also gives
3
divE, W = iA'_lw' (grad~, /\’).

Observe that this is precisely (2.12a). However, we are working with R instead of b/ , SO we
want to use D instead of D. The conformal transformation gives

1
divyy w' = X divy o' + §A’*1w' (grad, N') = 2N 71w/ (grad,, N,

on S, where we note that the X in the first term is taken into the gradient as we now raise
d\ with the metric /. O

Lemma 2.16. Let (M,g) be a stationary spacetime with stationary vector field £, observer
space S and twist covector field w. Then we have

AN = N7HaN |7, = N7Ho'[F, 4+ 20, (2.18)

where p € C*(S) is defined by 7*p = Re(E,§).

Proof. First, we note that L¢Rc = 0 because L¢g = 0, so we see that Rc(£,€) is indeed
constant along the integral curves of ¢ and there exists a smooth function p on S such that
m*p = Re(§,§). Using that £ is a Killing vector field, we easily see that V& = %gradg A on
M, and this gives

_ 1 1. )
(Aﬁ,)\’> om = DA = SATHAAL = SATAAR — A7 fwl} + 2Re(€, €).

Therefore,

N 1 -1 2 —1 2
AN = SNTHAX, = N[, + 2p,

which is (2.12b). Performing the conformal transformation gives

ApX = NT1AG N + %X‘1|d>\’|i, = N7HaN |2, - N

2N ),
with respect to h'. O

Finally, we want to translate the Ricci tensor to S. By O’Neill’s formula, we have
S e~ 1 - 1V [~ 7V
Rm(X,Y,Z,W)om = Rm(X,Y, Z, W) . 2g<[X,Y} : [Z, W] )

1 AV [~ AV 1 - eV [~ AV
- 4g<[X,Z] hau ) +4g<[X,W] 7.7 )
This relates the Riemann curvature tensor via a pseudo-Riemannian submersion.

Lemma 2.17. Let (M,g) be a stationary spacetime with stationary vector field £, observer
space S and twist covector field w. Let p be defined as in Lemma 2.16, then

1
R =R —-N"2Wp+ §X—2 (W @w +d\N ®dN), (2.19)

where R is a covariant 2-tensor field on S such that (7*R),,, = Eﬁh‘;RPU.
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Proof. In coordinates, we have
50 [yl 0 a0, 0]V (007G a6,
oyt oyl | Z@t oxt’ J 315 dxi | ot OxJ

([0 ok R )
_<A <amji 8xj>+/\ <"C’a ng))g

= (ARG )€ = (227 MR V.6 )€,

where bt = 6% + A~LErg, and Ty = %(T,W —T,,). This shows that

Rijp o = BERARE DT (Ruvpo + 207 V& Vplo + 207V, V6 ).

Hence, for the Ricci tensor on S we have

Rijom= (h ’fZka) om = WMRERERY R (Rovo + 207V p6u Voo + 2071V ,6,V,85)

= hP7REBY Ropo + X BT RERY (2 60V 0o + V&V b = Vpla Vs
= WERY Ry + N EPETRERY Ry + SN RPTRERYV 6,V 6,

where we used that V&, is antisymmetric and hP7 is symmetric. Using that £ is a Killing
vector field, we have

fJRp,uuo = vuvpg,u-
Therefore,

O Rywo = 5 VoV~ VoV, = LUV, — 09,695
Now,
EPETRE TV €V 6 = —iﬁgﬁgvuwyx = —iviij,
and using equation (2.13) we find
G 6V s = —%A‘l (Rijwats™ = wiw; = VidV;2).

Therefore,

D _JHTv Ly 15u5w Lo Lo 7 2

Rijom = WA Ry + 5N MRSV, V0 = 20 2VAV A+ 2 (wite; = Tigleol?)-

One can easily check that there is a covariant 2-tensor field R on S corresponding to EﬁﬁZRW
on M, and then

2

")

Here, we recognise (2.12c). However, we want to work with D instead of D. In that case,

~ 1.,  ~ ~ 1., o~ =
Rij = Rij + 5N DiDN = ZX2DN DN + X 2<w LT |

Rij = Rij = 5N DiDN + N TEDN DN 4 SN Ry A X = 2N hig X,

1
=Ry — N hi;p+ §X—2(wgw; + D;ND;\). 0
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We can transform the Einstein equations into equations on S using (2.9), (2.17), (2.18),
and (2.19). They are the exterior derivative of w, the divergence of w, the Laplaci-Beltrami
operator applied to A and the Ricci tensor on S. The advantage of working with h' instead of
h' can already be seen a little bit from (2.19), which contains one term less than (2.12c). We
will continue the discussion using the potentials for the multipole moments in Section 4.1.
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Chapter 3

Asymptotic Flatness in Stationary
Spacetimes

Our spacetime (M, g) is stationary and we want to work on the observer space S, which is
constructed in Section 2.2. The space S is a three-dimensional Riemannian manifold and we
want it to be asymptotically flat. The goal of this chapter is to understand what it means
for a three-dimensional Riemannian manifold to be asymptotically flat. There are multiple
inequivalent definitions of asymptotic flatness [9, 28, 42, 71]. Generally, one can distinguish
two main schools of defining asymptotic flatness, one via picking some nice coordinates and
one via the geometric idea of compactifications. Regarding the latter, Geroch defined a
geometric notion of asymptotic flatness in 1970 [42] as is discussed in Section 3.1. This notion
requires a one-point completion and we investigate uniqueness of the one-point completion in
Section 3.2. In Section 3.3, we compare Geroch’s notion to a coordinate-based definition of
asymptotic flatness, which leads to some loss of regularity.

3.1 Definitions of asymptotic flatness

Recall from Section 2.2 that the observer space of a stationary spacetime is a three-dimensional
Riemannian manifold. A stationary spacetime (M, g) is called asymptotically flat if (S, h')
is asymptotically flat. The goal of this section is to introduce two inequivalent notions of
asymptotic flatness of three-dimensional Riemannian manifolds. Since we only work on the
observer space S in this section, we forget about the prime in the metric A’ and just denote
it by h as no confusion can arise with the tensor on M defined by equation (2.2).

The first approach to asymptotic flatness requires a coordinate system and assumes that
the components of the metric tensor are the same as for the Euclidean metric up to order
%. We introduce the notion of asymptotic flatness of Lee [71, Definition 3.5]. In principle,
asymptotic flatness can be defined for a space with multiple ends and then the multipole
moments can be defined for every end. However, we restrict ourselves to manifolds with only
one end, constituting only one set of multipole moments. This can be interpreted as if you

walk infinitely far away in any direction, you will always walk towards the same infinity.
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Definition 3.1. A three-dimensional Riemannian manifold (S, h) is called coordinate-wise
asymptotically flat if there exists a bounded set K and a diffeomorphism ¢: S\ K — R3 \E?’,

=3 . . . . . .
where B~ is the closed unit ball in R3, such that if we use ¢ as a coordinate chart with
coordinates !, z2, 23, then, in that coordinate chart,?

hij = 5@'j + 0? (T‘(:L')_q),

for some ¢ > 1, where r(z) = \/(x1)2 + (22) 4 (23)%.

Say we have ¢ = 1 and we are given such a coordinate chart ¢: M\ K — R3 \Eg with Cartesian
L2 23, then we can introduce a new coordinate chart ¢: M \ K — B3\ {0}
with coordinates y* = T(“;)Q. Here, B? denotes the open unit ball in R3. What is at infinity

coordinates x

in the first coordinate chart, is at zero in the second coordinate chart. It seems natural to
add the point y = 0 as a completion at infinity. This led Geroch to define asymptotic flatness
via a conformal completion [42], which was motivated by a similar definition for asymptotic
flatness at null infinity due to Penrose [88].

Definition 3.2. A three-dimensional Riemannian manifold (5, h) is called asymptotically flat
if there exists a Riemannian manifold (S , h) and a function € C? (S) such that:

(i) S = 5\{10} for a single point i € S, and the inclusion ¢: S < S is a smooth embedding;
(i) *h = (:*Q)2h; N N N
(i) Q(i°) =0, d€o = 0 and D(d€)|;0 = 2h;0, where D denotes the Levi-Civita connection
of (5’, h).4

Remark. Since S is an open subspace of S according to (i) in Definition 3.2, we see that
(ii) implies that € restricts to a smooth nonvanishing function on S. Moreover, in local
coordinates around ", condition (iii) tells us that the gradient of € vanishes at i® and the
Hessian matrix is positive-definite at i°. Therefore, Q) attains an isolated local minimum at
i". Hence, the function € is positive on S.

3.2 Uniqueness of the one-point conformal completion

The Riemannian manifold (§ , E) in Definition 3.2 can be seen as a one-point conformal
completion of (S, h). If we want to work on S , it is important to know whether the Riemannian
manifold (§ , E) is uniquely determined by the Riemannian manifold (S, h). The multipole
moments will be defined as tensors at i and we do not want the multipole moments to
depend on the chosen one-point extension. In this section, we prove a uniqueness result. We
can replace part of the proof by a clever use of the conformal Laplacian, which we study the
the second half of this section.

A uniqueness result

In Definition 3.1, the bounded region K can contain all kind of strange things, but we do not
feel them at infinity. The idea of the next theorem is that we can also remove a subset such

3Here, O (r(m)fl) refers to an unspecified function in CEqA We say that f € Czq if there exists a constant
C > 0 such that |f| < Cr(z)™ %, |0if| < Cr(z)~%1, and 8;0; f] < Cr(z) 92
“Geroch only assumes that 15(5(2) ;0 is proportional to Tzio. The factor 2 is due to Hansen [48].
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that we perform a one-point compactification for the leftover. The subset helps to distinguish
“neighborhoods” of a possible singularity and . In [42], Geroch also “proved” that the one-
point completion is unique where he does not introduce such a subset. However, his “proof”
is incorrect and Theorem 3.3 is a correction of Geroch’s result.’

Theorem 3.3. Let (S, h) be a three-dimensional Riemannian manifold and let K C S be a
closed subset. Suppose there is a homeomorphism ¢: S\ Int K — R3\ B3 which restricts to a

diffeomorphism between S\ K and R3 \Eg If there exists a Riemannian manifold (§ %) with

QeC*(S ) satisfying conditions (i)-(iii) in Definition 3.2 and such that S\Int K is compact,
then it is unique up to conformal transformations with conformal factor 1 at .

Proof. We proceed with the proof in four steps. First, we start with uniqueness of (g, ﬁ)
up to homeomorphism, then we prove uniqueness up to diffeomorphism, and then we prove
uniqueness up to conformal transformations. In other words, first we show uniqueness of the
topology, then of the smooth manifold structure, and then of the metric up to a conformal
factor. Finally, we show that the conformal factor must be 1 at 5°.

Step 1: uniqueness of S up to homeomorphism. Let S satisfy condition (i) in Def-
inition 3.2 and such that S \ Int K is compact. We characterise the topology on § fix-
ing it uniquely, based on four claims. First, we want to fix the topology on the subspaces
S\K CS\IntK C S. Then, we show that S and S\ K form an open_cover of S. The

topologies given on S and S \ K then uniquely determine the topology of S.

Claim 1. A subset V C S \ K is open if and only if either V C S\ K is open or i® € V and
(S\Int K) \ V is compact in S\ Int K.

Proof of Claim 1. First, we want to identify the open subsets of S \Int K in the same way. Since
S\Int K is a locally compact Hausdorff space, it has a unique one-point compactification up to
homeomorphism [81, Theorem 29.1]. By assumption, S \Int K is a one-point compactification
of S\ Int K, so its topology is fixed. In particular, a subset U C S \ Int K is open if and only
if either U C S\ Int K is open or i® € U and (g\ Int K) \ U is compact in S\ Int K.

“—": Let V C §\ K be an open subset, then there exists an open subset U C S\ Int K
such that V =UnN (§\ K) For U, there are two possibilities. Firstly, if U C S\ Int K, then
we see that V' C S\ K is an open open subset. Secondly, suppose i’ € U and (§ \ Int K ) \U
is compact in S\ Int K. Then we have " € V. Since 0K is homeomorphic to OB = §?, it is
compact, and

V=Un(S\K)=U)\OJK.

This shows that
(S\It K)\V = (§\ It K) \ (U \ 0K) = ((§\IntK) \U) UK

is compact.

“ <=": There are two cases to consider. For the first case, let V' C S\ K be an open subset,
then V' C S\ Int K is also open. But then V' C S \ Int K is also open, from which we can
conclude that V' C S\ K is an open subset. For the second case, let VVC S\ K be a subset

5 In [42], Geroch defined a topology where the open neighborhoods of i° are the subsets U U {io} of S where
U is an open subset of S with compact boundary. However, this does not define a topology.
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containing i and such that (§ \ Int K) \ V is compact in S\ Int K. Then we have that
V C S\ Int K is open, which also gives that V' C S\ K is open. |

Claim 2. The family {S,g\ K} of subsets of S is an open cover of S.

Proof of Claim 2. Since K C S, it is clear that S=Su (5 \ K ) The singleton {20} is closed
in S because S is Hausdorff by assumption, so S = S \ {10} is an open subset of S.

We are left to show that S \ K is an open subset of S. Let K denote the closure of K in
S, then we are done if K = K. Since S \ K is an open subset of S and S is open in S, the
set S\ K is also open in S. Therefore, K C K U {20} Let U be a coordinate domain for
S centered at i. Since K is compact in S, it is also compact in S and U \ 0K is open in
S. Let V be the connected component of U \ K containing i°. Then V is homeomorphic
to an open, connected subset of R®. Moreover, W = V \ {io} is also an open, connected
subset of S. Hence, the set W is open and connected in S, and does not intersect 0K. Then
W NInt K and W N (S\ K) form a disjoint open cover of W, so by connectivity only one of
them can be nonempty. Suppose W N (S\ K) =0, then V' N (§\ K) = {i®}. By construction
of the subspace topology, V' N (§ \ K) = {io} is open in §\ K, so S\ Int K is compact by
Claim 1. But S\ Int K is homeomorphic R? \ B3, which is not compact, so we arrived at
a contradiction. Therefore, we must have W N (S \ K) # (), implying that W N Int K = {.
Hence, V is an open neighborhood of ¥ in S that does not intersect K. Therefore, i ¢ K
and we achieve that K = K. |

Claim 3. Let T be the topology of S and let Ty be the collection of open neighborhoods of 1%
in S \ K, then T U T, is a basis for a topology on S,

Proof of Claim 3. We have S € T and S \ K € T, and these open subsets of S cover S by
Claim 2. Therefore, each point in S is contained in an element of 7 U T:0. By definition of a
basis for a topology on §, we are only left to show that for any x € UNV with U,V € T U7,
there exists a subset W € T U T,o such that z € W C UNV [81, Section 2.13]. In particular,
it suffices to show that 7 U T is closed under taking intersections.

There are a few cases to consider, depending on whether U and V belong to 7 or T,. If
U,V € T,then UNV €T because a topology is closed under taking intersections. If U € T
and V € Tp, we have UNV =UN (V \ {i°}). Since {i®} is closed in S\ K, the set V'\ {i%}
must be open in S \ K, but then V'\ {io} is open in S\ K by Claim 1, so it is open in S.
Therefore, UNV =U N (V\ {io}) € 7. Finally, if U,V € T, we have i € UNV and

(S\Int K)\ (UNV) = ((E\IntK)\U) U ((§\IntK) \V),

which is compact because as a union of two compact sets. Hence, UNV € 7,0 by Claim 1. We
conclude that 7 U T is closed under all possible intersections and it is a basis for a topology
on S. n

Claim 4. The topology of S is the topology generated by T U Too.

Proof of Claim 4. Let T be the topology of S. The collection T UTo of subsets of S consists
of subsets that are either open in S or in S\ K. Since S and S\ K are open in S by Claim
2, these subsets must also be open in S. Hence, T U To C T, from which we conclude that
the topology generated by 7 U 7,0 must be contained in T.
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Conversely, let U € T. If i© ¢ U, then we have U =UNS € T. Ifi®cU,thenUNS eT
and U N (S\ K) € T because S, 5\ K C S are open. But we also have

U:(UmS)u(Um(§\K)),

so U is contained in the topology generated by 7 U7T,0. Hence, T equals the topology generated
by 7 U Tpo. |

Claim 1 fixes T as the collection of subsets V C S\ K such that i® € V and (§\ Int K) \ V
is compact in S\ Int K. Since the topology on S and the subset K are given, it fixes both
T and T;0. Hence, the topology on S is fixed by Claim 4. This gives uniqueness of S up to
homeomorphism.

Step 2: uniqueness of S up to diffeomorphism. Moise’s theorem tells us that every
3-dimensional topological manifold admits, up to diffeomorphism, a unique smooth structure
[79]. By Step 1 we have uniqueness of S up to homeomorphism, and thus uniqueness of S up
to diffeomorphism follows immediately.

Step 3: umqueness of (S h) up to conformal transformations. Assume that we have
two metrics hl and hg on S with conformal factors Q1 and €y, respectively, satisfying the
conditions (i) and (ii) of Definition 3.2. On S, we have h = ¢ (Q hl) =1 (Q 2h2). As

already remarked below Definition 3.2, the functions {2; and {22 are smooth and nonvamshmg
on S. Then w = Qy/€ is a well-defined, smooth function on S. Moreover, hg (Qa/ Ql) =
2h1 on S. It remains to extend this property to S =Su {20}. Let (E1, Es, E3) be an

orthonormal frame on an open neighborhood U of i® with respect to h;. Then we have
w? = W?hy (B, E1) = ha(Er, Ey),

on U\ {z’o} The right hand side is a smooth, (strictly) positive function on U, so w? also
extends smoothly to i° ~with a positive value. Therefore, w also extends to a smooth, non-
vanishing function on S. By continuity, we must have ho = w?hy on all of S establishing
uniqueness up to conformal transformations.

Step 4: Uniqueness of the conformal factor at i. Let us compare the two metrics and
conformal factors in light of condition (iii) of Definition 3.2. By Step 3, we have Qs = wy
for a smooth, nonvanishing function w on S. Let 5, denote the Levi-Civita connection with
respect to Ei, for i = 1,2. Then the relation for the Levi-Civita connection between conformal
metrics [73, Proposition 7.29] gives

Eg(dﬁg) = 51(d§22) — wil(dQQ ® dw + dw ® dQ) + wdQs (gradﬁl w)l~11.

When evaluating at i°, the last three terms vanish because dQs|, = 0 by condition (iii) in
Definition 3.2. The first term is

D1 (dS2) = Dy (d(w1)) = D1 (wd + Qrdw) = wDy (dQy) + dw @ d +dQ @ dw+ QD (dw),

of which the last three terms also vanish at i because of condition (iii) in Definition 3.2. So,

Do(d2)| |

= w(i%) Dy (wd)| ,
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and applying condition (iii) in Definition 3.2 once more yields

2(w (i)’ k1| = 2hs| = Do(d2s)

w (ZO) .51 (dQl)

L, T 2w (io) hy

]

i0 i0 o0 i’
Since w is nonvanishing on §, this is only possible if w(z’o) = 1, fixing the conformal factor at

i0. O

We typically assume that the subset K in Theorem 3.3 is bounded. To define multipole
moments, we are only interested in what happens around i°. Therefore, we can simply
remove K from the space S and work with S\ K. Then, K only serves to distinguish the
“boundary” 0K = OB? from 7°.

Alternative approach via the conformal Laplacian

In Step 2 of the proof above, we made use of Moise’s theorem, which relies on algebraic
topology. It is also dependent on the dimension. It is also possible to show uniqueness up
to diffeomorphism directly, which is the approach originally taken by Geroch [42, Appendix].
This method relies more on analysis and geometry, and can be generalised to arbitrary di-
mensions. The idea is to use the fact that the smooth structure is completely determined by
the space of smooth functions [84, Section 1.1]. Since S contains S as an open subspace, the
smooth structure of S restricted to S is fixed, but we need a characterization for the smooth
functions on a neighborhood of i°. We prove such a characterisation in Theorem 3.6, but first
we need a proposition and a lemma.

The idea is to construct the smooth functions based on solutions of the conformal Laplace
equation. For three-dimensional manifolds (.S, h), the conformal Laplacian is Ap — éR, where
Ay, denotes the Laplace-Beltrami operator with respect to h and R is the Ricci scalar. Gen-
eralising to arbitrary dimension n, we have the following result:

Proposition 3.4. Let (S,h) be a Riemannian manifold of dimension n > 2 and let h=0%h
Jor some smooth, positive function Q on S. Let R and R denote the Ricci scalars with respect
to h and h, respectively, and define € C*°(S) by

Proof. Let D and D denote the Levi-Civita connections with respect to h and ﬁ, respectively.
After performing the conformal transformation to the Levi-Civita connection, the second
covariant derivative of ¢ becomes

f)(f)@) = D(dF) = D(d@) — Q71 (dF ® dQ + dQ ® dF — d(grad, Qh).  (3.1)
For the differential of (, we have

_ n—2

dp = — 5 Qfgcde—i-Q*nTiQdap.
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Then the second covariant derivative of ¢ with respect to h becomes

n(n — 2)
4
+Q7 2 D(dy).

D(dp) = Q—%ﬁpda ® dQ — nTQ_f(dgo ®dQ + dQ ® dp) — nTQ‘fgoD(dQ)

For the Laplace-Beltrami operator with respect to %, we want to take the trace of equation
(3.1) with respect to h. Let (E1,...,E,) be a local orthonormal frame with respect to h,

then (El, . ,En> with E; = Q7 'E; for i = 1,...,n is an orthonormal frame with respect to

h. The equations above give

a3 = 3 B(7) (. B) = 073 B(B9) s, 2

_ 0B Y D) (B B - " ‘"THSOZD(DWE“EZ‘)
— i=1
n -2),
—1
+(n - Z 207 ZdQ
-9 n B 3
— 120" pdO(grad), Q) Z ME: B) + Q7% dip(grad;, @) Y h(E;, )
i=1 =1
_ -2 (Ah LoALQ — WQ_Qgde(gradh Q))

The Ricci scalar transforms as
R=0"%R-2(n—-1)Q7'ALQ — (n — 1)(n — 4)Q~2dQ(grad;, Q)).

Combining both expressions, we find
n—2 =~ nt2 n—2
Ay ———R Q- App — —=R ). O
( P A )“0 ( REEETORSY )“"

We want to use Proposition 3.4 to identify smooth functions on S with smooth functions on
S. The following lemma provides one step of the correspondence.

Lemma 3.5. Let (S, h), (5, ﬁ) and Q) be as in Definition 3.2. Let ¢ be a continuous function
on S that vanishes at i%, is smooth on S and solves

<Ah - ;R>¢ —0, (3.2)

on S. Then the function p = Q_%go defined on S extends to a smooth function on S.
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Proof. By Proposition 3.4, we have
~ 1\ _

on S, where ¢ = Q_%go. Here, Eﬁ denotes the Laplace-Beltrami operator on (§, 71,), but

we restrict it to S. It is not clear whether ¢ even extends continuously to a function on S.
Let (U, (yl,y2,y3)) be a normal coordinate chart for (S, h) centered at i”. Then we have

hi; (io) = 0;j, and by Taylor’s theorem

Qy) = (6i5 + fi;()y'y,

for some continuous functions f;; with f;; = f;; and f;;(0) = 0. After possibly shrinking

U, we can assume that the eigenvalues of the matrix with entries d;; + fi;(y) are between i

and 4. Then we have ir2 < Q(y) < 4r? where r? = §;;5%y7. Since ¢ is continuous, we can
assume it is bounded on U after shrinking U even more if necessary. But then ¢ = Q_%w is
bounded by a multiple of % By a singularity theorem of Serrin [100, Theorem 6], the function
@ must have a removable singularity at 0, or there exist positive constants ¢; < ¢o such that
&4 < |@] < 2. In the latter case, we have & < [p| < 2cp on U \ {i}, but that contradicts
continuity of ¢ at i® with go(io) = 0. Hence, @ has a removable singularity at 0. In particular,
© is bounded on a small enough neighborhood of 0 and ¢ is twice continuously differentiable
and a solution of equation (3.3) by Bochner’s theorem [19]. But then ¢ is smooth because

the elliptic partial differential equation has smooth coefficients. O

With the results above, we are able to prove the following characterization of smooth functions
on S.

Theorem 3.6. Let (S, h), (§, l~z) and € be as in Definition 3.2. Then a function f € C’(g) 18
smooth if and only if the restriction f|g is a smooth function on S and there is a neighborhood
U of i° such that fly = Fol(p1,...,0k) for some smooth function F': R* — R and some

continuous functions p; on S that vanish at i°, are smooth on S, and satisfy (3.2) and
gZi:Q*%gpi, fori=1,...k.

Proof. “ <= ": Since f restricts to a smooth function on S, we are only left to show that
f is smooth on a neighborhood of i°. By Lemma 3.5, the functions @1, ..., are smooth
on S, but then fly = Fo(f1,...,¢k) is a smooth function on U. Therefore, f is a smooth
function on S.

“=": Let f be a smooth function on S, then f restricts to a smooth function on S because
S is a smooth submanifold of S. Let (yl,yQ,y3) be smooth coordinates centered at i°. In
this chart, equation (3.3) is an elliptic partial differential equation with smooth coefficients.

For each i = 1,2, 3, there exists a solution z* of
~ 1=\

such that 7% has Holder continuous derivatives of order 2 and such that 7 = 0 and 2Z. — 5;

Oy
at y = 0 [15, Theorem I1.5.4.1]. Since the elliptic partial differential operator has smooth
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coefficients, we see that the functions z* are smooth. Then, F = (fl, z2, 53) is a smooth map

on a neighborhood of i with g%; = 5; In particular, dF|,0 is invertible and F' restricts
y=0

to a diffeomorphism between a neighborhood of i € S and a neighborhood 0 € R? by the
inverse function theorem. This gives a new smooth chart centered at i on a possibly smaller
neighborhood U, and the coordinates satisfy equation (3.4).

Define 2 = Qéii, then 2’ is a continuous function on U that vanishes at i° and restricts to
a smooth function on U \ {io}. By Proposition 3.4, we have

1 .
<Ah — 8R> x' =0, (3.5)
on U\ {io}. Taking ¢; = x*, we have $; = z' and since (:51, z2, 553) are smooth coordinates for
S around 7%, any smooth function can be represented as a smooth function of (51, 72, 53). O

The theorem above is Geroch’s characterization of smooth functions on S. Given a topology
on S, it can be used to define a smooth structure on S.

3.3 Comparison of different approaches to asymptotic flatness

Even though we motivated Definition 3.2 via Definition 3.1, the latter does not imply the
former. The main issues lie in the regularity. The point i from Definition 3.2 can always be
added continuously in the way suggested above Definition 3.2, but it cannot be done smoothly
in general. In this section we want to grasp the idea of how they relate to each other, for which
we define a new type of regularity. With this new regularity class, we show that coordinate-
wise asymptotic flatness implies asymptotic flatness and the conformal completion is unique
in this weaker sense.

Weakening the regularity

Let (S, h) be a three-dimensional Riemannian manifold that is coordinate-wise asymptotically

flat. Let K C S be bounded and let ¢: M \ K — R? \Eg be a diffeomorphism with induced
coordinates (ml,mQ,mS) such that

h”(l‘) = 52‘]‘ + 02 (T(l‘)_l).

Here, r(z) = \/(acl)2 + (22)% + (23)%. Let ¢: M\ K — B3\ {0} be given by ¢(p) = &(pp))'m
then ¢ is also a diffeomorphism and it induces coordinates (yl,yz,y?’) with % = % We
do not consider r to be a function on the manifold, but on the coordinates. Therefore,

r(y) = r(z)~1. In this new coordinate system, we have
hij(y) = r(y) " (05 + O*(r(y))).
It seems natural to pick Q(p) = r(¢(p))* and then

hij(y) = i + O*(r(y)).

41



In this way, the conformal metric h can be extended continuously to y = 0, but its regularity
may be spoiled by the term 7(y). The Euclidean norm, however, is Lipschitz continuous,
suggesting we should relax the transition functions between charts to be Lipschitz continuous
at i (y = 0) rather than differentiable. This leads to an new regularity structure on S , which
we will now define following Chrusciel [28].

Definition 3.7. For k € N and « € (0, 1], define the set of functions Ay o(Br(0)) on the open
ball Br(0) C R? of radius R centered at the origin as the functions f € C'(Bg(0)) satisfying

FlBronoy € C*(Br(0)\ {0}) and

of of

v - el
oyt 4 oyt

ayil 8y12

_ o
Oyt ... Qyir

(0)' < Cr(y)?,

<y>\ < Cr(y) ...

(y)‘ < CrohtL

for some constant C. Here, (yl, Y2, y3) are Cartesian coordinates on Br(0).

Definition 3.8. An Ay ,-structure on S is a maximal atlas on S such that the transition

functions for charts contained in § C S are C¥ , and in local coordinates, in a neighborhood
of i® = 0, the transition functions belong to Ay »(Br(0)) for some R > 0.

Clearly, Aj11.0(Br(0)) C Ax(Br(0)) and C*+1(S) C C*(S), so Agy14-transition functions
are also Ay o-transition functions. In particular, an Ayi-atlas is an Ay ,-atlas. If S is

smooth, we can define such an Ay o-structure on S for any k& > 1, and we could also define
an Ay o-atlas by demanding it is Ay o for any k.

Definition 3.9. The Ay, ,-functions on S are functions that are C* on S C S and its coor-
dinate representation around ¥ belongs to Ay o(Bg(0)) for some R > 0. We will denote this

space of functions by Ay, (5)

Definition 3.10. A tensor field ¢ is of class By if its components t; (with I =1i1...4p) in
an Ay, o-atlas, with £ > [ 41, are C' on S and there exists a constant C’ such that

It1(y) = tr(0)| < C'r(y)®s... 1y -~ Oytr| < C'rY,

for all y € U\ {i}, where (U, y) is a coordinate chart centered at i°.

With those new regularity classes at hand, we want to redefine our notion of asymptotic
flatness of Definition 3.2.

Definition 3.11. A three-dimensional Riemannian manifold (S5, h) is called weakly asymp-
totically flat if there exists an Ay, o-manifold S with k£ > 3, endowed with a Bj_1 o-metric h,

and a function Q € C! (§) with 9;Q0 € Aj o (§), such that:

(i) S=25\ {i"} for a single point i € S, and the inclusion ¢: S < S is a C*-embedding;
(ii) *h = (1*Q)2h;

(i) Q%) =0, dQ0 = 0 and D(dQ)| = 2h)j0.

70

If we work with C*-structures on S , there can be many inequivalent conformal completions
of asymptotically flat spaces. This is an unwanted property because it would be unclear
how to relate possible definitions of multipole moments in such inequivalent completions. We
want the conformal completion to be a property of the space. For the physics, there is no
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preference for any Ay ,-coordinate system, so that this is the appropriate regularity class
[28]. For this reason, we redefined our notion of asymptotic flatness and we demand that S
is a Ay o-manifold. Luckily, the assumed bounds still allow us to do some calculus on such
manifolds. In particular, we can still use results about elliptic partial differential equations.
The main reason is that Lipschitz continuous functions are weakly differentiable, which turns
out to be sufficient. We can still use the conformal Laplacian.

Uniqueness of the one-point conformal extension in weaker regularity

The question we will be left with for the remainder of this section is whether, if it exists, the
conformal completion (S, k) is unique. The discussion is based on several lemmas and follows
Chrusciel [28].

Lemma 3.12. Suppose we have a metric g on By, (0) satisfying

‘gij(-T) - gij(0)| < Cro" ’akgij| < CT‘a_l, . |8Z . 8iggij| < C«T,oz—f7 (3.6)
for some constant C, £ > 1. Suppose we also have a function ¢ € C*(B,,(0) \ {0}) such that
‘C| < CT‘O‘—Q, ‘azC| < Crﬂé—3’ e ’82 ce 8ch| < CvT.Oé—2—k7

k > 0. Then there exists 0 < r1 < 19 and a function f: By (0) \ {0} — R that is a weak
solution of

(Ag +)f =0,
on B, (0)\ {0}, and satisfies 3 < f < 4.

Sketch of the proof. We refer to [28, Lemma 2.1] for the full proof. The idea is to use conformal
invariance as in Proposition 3.4. The Laplace-Beltrami operator and the function f transform
in the same way, and for ¢ we demand the same conformal transformation rule as for —éR.
Introducing (1 — ar®)? as a conformal factor for some constant a will do the job. Then it
is possible to find sub- and supersolutions to the elliptic partial differential equation, and
a sequence of solutions that must be in between the sub- and supersolution. Using careful
estimates and extracting a subsequence, one achieves the result. ]

Now, Lemma 3.12 gives a solution on By, (0)\ {0}, but we also want to understand its solution
at 0, which we identify with i°. This is solved by the lemma below. Its proof is based on
the fact that we have bounds on our solution, allowing us to extend it to a weak solution on
B,,(0). We also need some bounds on the derivatives such that f is indeed of the wanted
form.

Lemma 3.13. In the setting of Lemma 3.12, f can be extended to a weak solution of
(Ag+c)f =0,
on By, (0). Furthermore, there exist constants f(0) and Ca such that
|f () = f(0)] < Cor®, |8if| < Cor®™',..., |0y, - B, f|Cor® ™™,
if0<a<l, andifa=1,
|f(z) — f(0)] < Carlogr,|0;f| < Cologr,...,|0; -0, f| < Car® ™logr,
where m = min(¢, k + 1).
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Proof. See [28, Lemma 2.2]. O

Next, we want to understand the conformal factor a bit better. To this end, we utilise the
elliptic partial differential operator (3.2) together with Lemma 3.12 and Lemma 3.13.

Proposition 3.14. Let 0 < o < 1, and let g* and g* be two metric on neighborhoods U; C R?
and Uy C R3, respectively, of the origin, and suppose we have a homeomorphism ¢: Uy — Us
that maps 0 to 0 and is C* away from the origin, and the metrics are related by

k
o) = @) () 22 02

Moreover, suppose g' and g obey the inequalities from equation (3.6) with £ > 2. Then the
function w can be extended to a continuous strictly positive function on Uy, satisfying

lalw\ < C’I”ail,
for some constant C.

Sketch of the proof. For more details, we refer to Chrusciel [28, Proposition 2.3]. We restrict
ourselves to ¢ > 3, and ¢ = 2 can be done by an approximation argument. By Lemma 3.12
there exist functions ¢1 and ¢9 between i and 4 such that

1~ \~
(Ag“ - 8Ra> ¢a = 07

for a = 1,2. Consider the metrics g* = #*g%, then the corresponding Ricci scalars vanish,
i.e. R, = 0. Moreover, Lemma 3.13 tells us that the metrics g% also satisfy the 1nequaht1es
from equation (3.6). Let Q = ¢ wg[) 2 then g! = 0252, Hence, we must have A~1Q2 =0 and

A?Q_% =0 because Ry = Ry, = 0. But then, like in the proof of Lemma 3.5, Q2 must be
bounded or go as 3 L by Serrin [100], and the same holds for Q2. We do not want that Q™2

Vanlshes at the origin, giving that Q3 must be bounded, and replacing the roles shows that
Q™2 must be bounded. But then Lemma 3.13 gives estimates on the derivatives of Q2 SO we
can bound the derivatives of (22, ¢1 and ¢9, giving the result for w. O

This proposition will be important to prove uniqueness of the conformal extensions in the
definition of weak asymptotic flatness. The following theorem states the result.

Theorem 3.15. Suppose (:S'vl,i(l),ﬁl) and (§2,i8,fqa) are two Ay o manifolds with By_1 o met-
rics for some 0 < a < 1, k > 3. Suppose there is a pointqgi continuous conformal mapping
between (Sy,19,3") and (Sg, i9,G°) that is differentiable on Sy \ {i%}, then it is A q.

Sketch of the proof. We refer to [28, Theorem 2.4] for a full proof. The proof basically works
by writing out the conformal transformation laws for the Ricci tensor and the Ricci scalar.
Then the equation for the Ricci scalar gives that A;:1€ is bounded by Cr®~2, which implies
by the other equation that the second order partial derivatives of {2 satisfy the same bound,
with a possibly different constant C. Using the conformal transformation for the Christoffel
symbols, we see that the the coordinate transformation is As,. Taking sufficiently many
derivatives of all these equations gives the result. O
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Since weak asymptotic flatness does not guarantee that we can differentiate at " many times,
it is not sufficient for us to define multipole moments. If we allow ourselves to take directional
derivatives at i, the uniqueness is spoiled. Then there are logarithmic ambiguities [28].
However, these logarithmic ambiguities do not affect the four-momentum [3]. The main
reason why these Ay, ,-structures are useful is how they correspond to versions of coordinate-
wise asymptotic flatness [9, 27, 28, 71, 85].
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Part 11

Multipole Moments in Vacuum
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Chapter 4

Geroch—Hansen formalism

The goal of this chapter is to construct multipole moments in general relativity in a geometric
way. We restrict ourselves to stationary asymptotically flat, vacuum solutions of the Einstein
equations. There are several ways to define multipole moments and we study the one by
Geroch—Hansen [42, 48]. To define the multipole moments geometrically, we utilise the mass
and angular momentum potentials, which we introduce in Section 4.1. After that, we present
a rigorous construction for the multipole moments in Section 4.2. However, it is often difficult
to calculate the multipole moments, but we can simplify the construction in axisymmetric
spacetimes as we will see in Section 4.3. This allows us to compute the multipole moments
for the Kerr solution to arbitrary order.

Remember that we work on a stationary spacetime (M, g) with stationary vector field & and
observer space S, which is constructed in Section 2.2. In this chapter, we also assume M
is a vacuum solution of the Einstein equations. The observer space is a three-dimensional
Riemannian manifold with a metric h determined (2.2) and we assume (S, h) is asymptotically
flat, giving the Riemannian manifold (S h) and scalar field Q € C? (S ) as in Definition 3.2.
We assume the conditions of Theorem 3 3 hold such that (S h) is unique. Since we are only
interested in the local picture around i®, we can remove the set K in Theorem 3.3 from S and
S. We will do this for simplicity. Correspondingly, one could also remove 7~ !(K) from M,
where 7: M — S is the projection. So, we assume that S is diffeomorphic to R3 \Eg =~ B3\ {0}
and S = B®. For the de Rham cohomologies of S, this gives Hl:(S) =0 and H3z(S) =R
because B? \ {0} is homotopy equivalent to S? [72, Chapter 17]. Like in the previous chapter,
we drop the primes when working on S and it should be clear where we are working.

4.1 Mass and angular momentum potentials

In this section, we introduce the mass and angular momentum potential. The potentials turn
out to be functions on S and we bring them to S with a conformal factor. The main result
of this section is proving that the mass and angular momentum potentials are indeed smooth
on S (under an extra assumption).
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Potentials on S

Before we define the multipole moments, we recall two important tensor fields from Chapter 2.
Firstly, equation (2.1) defines a scalar field A as

A= _9(675)7

which reduces to a scalar field on S. The other one is the twist one-form w defined in
Definition 2.9. In vacuum, the twist one-form is closed by Theorem 2.12. Since we assume
H! (S) = 0 (see the paragraph above the header of this section), there exists a twist potential
f € C*(S) such that

df = w.

The twist potential f is not uniquely determined by this equation. We may add a function
f such that df = 0 to f. Since S is assumed to be connected, df = 0 implies that f
is constant. We want to take this constant to be —lim, ;0 f(z), because that would give

lim,,_,;0 ( f+ f) () = 0. However, it is not clear whether —lim,_,;0 f(x) exists. This is an
extra assumption and we come back to it at the end of this section. For now, f is just a

primitive of w.

Definition 4.1. The mass potential on S is given by

1— /\2 _ f2
= 7 4.1
dm o (4.1)
and the angular momentum potential is given by
¢ = =7 (42)

T 2)\

They are analogous to the Newtonian mass and angular momentum potentials [48]. Some-
times, it is convenient to view the mass and angular momentum potentials as one complex
potential via

o = dum +idy.
Alternatively, we can consider the Ernst potential [36]. Then we write £ = A + if and we
consider the potential given by

C14+E 0o
T1-E (1-M2+ e

All these potentials are defined by functions on S, so we see that the potentials itself are also
functions on S.

dE (4.3)

Besides closedness of w, the Einsteins equations in vacuum also imply that
Aph = AR - a2, (4.4)

and that Ricci tensor on (S, h) is

1 1
Re = 5A—2(df @df +d\®@d\) = 5A—Q(df2 +dX?). (4.5)

5We use the opposite sign of Hansen [48] to ensure that the mass monopole moment in the Schwarzschild
spacetime returns the mass parameter, not minus the mass.
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These equations are found using (2.18) and (2.19). Taking the trace gives the Ricci scalar
1
R= §A—2(|dfyi + \dA\i). (4.6)

We want to express the Einstein equations in terms of the mass and angular momentum
potentials following Hansen [48] and Beig and Simon [13, 103]. In (4.5), we expressed the
Ricci tensor of S in terms of A and f. We can also express it in terms of ¢p; and ¢ :

Lemma 4.2. The Ricci tensor of (S, h) satisfies

Re = 2(déy ® dony + dos @ dpy — dS ® dS) = 2(dd}, + do — dS?), (4.7)
1
where £ = §(1+46%, +463)% = (+ 63, + 63)7 = IV (2 4+ /24 1),

Proof. We have
Pmdom + ¢ydoy

dy =
E )

SO
d5? = 572 (@3,dd3, + 206 sdord, + $5d0%)

14 4¢?% > 2 8pr1 ¢ ( 14 4¢3, ) )
=|l1-—— |doyy+ —————5dopydoys+ | 1 — ————— |do5.

( 15463, + 462 ) " T T g, 4 agg om0 1462, + 462 ) %7
For the right-hand side of equation (4.7), this gives

1+ 4¢3 8 1+ 4¢3
¢ oufs sddndpy + O 5 do7.

dp3, +dg% —dx? = —— " g2, — — 0T ——
O Aoy 1+ 4%, + 497 O 1+ 4%, + 4¢% 1+ 4¢3, + 4¢7

Using the expression for ¢p; and ¢z, we have
1 1
don = ZA—2(A2 — P+ 1)dr+ 5A—{fdf,

and 1 ]
dpy = 5A—ldf - 5/\‘2fd)\.

A tedious but straightforward calculation shows that
1
Ay + dof — d5? = 2 X7 (dX* + df?).
Equation (4.5) finishes the proof. O

In the spirit of (2.16) and (2.17) where we calculated the Laplacian of A and f, respectively,
we can also calculate the Laplacians of the mass and angular momentum potentials.

Lemma 4.3. The mass and angular momentum potentials satisfy

(Ah - ;R> ba="Drtos, (4.9)

where k* = R on (S, h), for A= M, J.
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Proof. Using equation (2.17), we see that
Anf =2X"1df (grad \).
Together with equations (4.4) and (4.6), a direct computation shows that
Appa =2Roa,
for A = M, J, giving the result. O

Potentials on S

The reason to introducle x in Lemma 4.3 is because we want a differential conformal transfor-
INnation rule for kK = R4 than for the Ricci scalar R itself. Under conformal transformations
h = Q%h, we demand

R=Q7%k  ¢a=923¢4, (4.10)
for A= M, J. Equation (4.9) is then conformally invariant by Proposition 3.4:
~ 1\~ 15 4~
A: — —R)ps = —F'Pa. 4.11
< PR >¢A g h oA (4.11)

To conclude smoothness of the potentials 5 4, we want to improve the regularity using the
elliptic partial differential equation (4.11). However, the coefficients of this differential equa-
tion depend %, which is not necessarily smooth. Therefore, we also want to use an elliptic
partial differential equation for k. We introduce the Cotton tensor field C, defined by

1
Cijk = DkRij — DjRik + Z(hlijR — hZJDkR)

The Cotton tensor field is conformally invariant in dimension 3 [73, Proposition 7.34], reading
C’ijkCijk = Q*6Cijk0ijk. Contracting equation (4.7) gives

wh = R =2(|dow; + dgsl; — |a=]}). (4.12)

Equations (4.9), (4.7) and (4.12) together with a tedious calculation show that x satisfies an
elliptic partial differential equation of the form [48, Equation (2.20)]

1 1 y
<Ah _ 8R>H SR 57(4Cijkclﬂ’“ + F(64, Déa, D64, %, DS, D2, , Dn)) (4.13)

The function F' can be shown to be conformally invariant in the sense that F = Q 5F when
Y. = X¥. Hence, Proposition 3.4 implies that (4.13) is also conformally invariant

C 1 \L 3 fla o me m mp wome mo ~
(AE . SR),@ = B+ n7<4cijk0”’“ + F<¢A,D¢A,D2¢A, 5, DS, D25, 7, Dm)) (4.14)

However, we also introduced a new function: ¥ = 3. Using equations (4.8), (4.9), and (4.12),
we an easy calculation shows

MY = =3 7Nd ] + 37 (Jdowly + onrBndur + 1dbal; + 65800,

1
= 52_1/# +2n 1kt (qb?\/[ + qb?]) = 2x1%.
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This equation is, however, not conformally invariant. By writing zero in a hard way, this
equation can be rewritten as’

AR = 651 — 2(g3, + ¢3) " (g grad das + ¢y grad d)

(4.15)
—2
+25(45% — 1) (¢4, + 0F) " |oardes — dsdduly,
and from this equation an easy calculation shows
~ -~ ~ ~ ~N—1 ~ ~ ~ ~
ArY =6R'S -2 (¢%W + qs%) dx (¢M grad ¢ + ¢ grad qu) (416)
.16

+28(152 1) (B + 33) |Gy — Gaddu

Equations (4.11), (4.14) and (4.16) constitute elliptic partial differential equations for ba, R
and X, respectively, whose coefficients depend on each other. We can show that they are
smooth by exploiting the bootstrap of elliptic regularity [48]:

Lemma 4.4. Let (M, g) be a stationary asymptotically flat spacetime with Ricci tensor Re =
0. Suppose qu, ¢y and & extend to C?-functions on S such that ng( ) 7& 0, then 5

continuously extends to a function on S and all four functions are smooth on S.

Proof. For X, we can write

~ 1 ~ ~5\ 2
= (4+Q¢§W+Q¢3) ,

which is positive, so it is a C2-function on S. Equations (4.11), (4.14) and (4.16) constitute
elliptic partial differential equations on S = S \ {20} with respect to h. By continuity and

the C2-assumptions, they extend to equations on S.

We proceed by induction. Suppose (EM, 5 7, Kk and 3 are C"-functions for some n > 2.
Then (4.11) and (4.16) constitute elliptic partial differential equations for ¢4 and ¥ whose
coefficients are C™~!-functions, so &ZA and X are O™ functions on S for A = M, J. But then
(4.14) constitutes an elliptic partial differential equation for & whose coefficients are C"~!, so
% is also a C"-function on S. By induction, the functions are smooth on S. O

Since we need smoothness of the potentials to define multipole moments up to arbitrary order,
we are only interested in the situation where this is satisfied. The previous lemma shows that
it is sufficient to require the potentials and % extend to C?-functions on S. This is the reason
why Beig and Simon include in the definition of asymptotic flatness that the potentials must
extend to C2-functions on S [12, 13].

As promised, we have another look at the gauge freedom in the twist potential. We assume
that ¢y = Q7 2(;5M and ngJ =0 2¢J extend to i® in a C? (or smooth) sense, which implies
that

lim ¢pr(z) =0, hm oy =0.

z—i0 z—5i0

Therefore, ¢y and ¢ extend continuously to i® with 0. Suppose there is a sequence (x,,) in
S such that x,, — i and A(z;,) — oo. Then we have ¢y (x,) — —oo, which contradicts that

"This is equation (2.21) in [48], but we corrected a sign error.
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lim,_,;0 ¢ar(x) = 0. Therefore, we can safely assume there is a neighborhood U C S of °
such that A is bounded on U \ {i}. In that case, lim,_,;0 ¢; = 0 implies that

lim f =0.

z—5i0

This is precisely how we want to fix the gauge in the discussion above Definition 4.1. If 5 M and
¢y are smooth, the gauge is fixed! Moreover, the facts that X is positive and lim,_,;0 ¢pas =0
imply

lim A = 1.

z—i0

Below Definition 4.1, we also saw the potentials ¢ and ¢g, which differ by the factor
4 Observe that

(T+N)2+f2
li 4 1
im — = 1.
z—i0 (1 + )\)2 + f2
When we bring ¢c and ¢g to S using gg A= Q_%gb 4, we can therefore take this factor (Hf)iéﬂw

into the conformal factor and the resulting multipole moments should be equivalent. Note
that Theorem 3.3 leaves the freedom to change the conformal factor by a function that is 1
at i°. Proposition 4.10 in the next section discusses how the multipole moments change when
we change the conformal factor.

Note that if the mass of the system vanishes, i.e., if QEM (io) = 0, then the proof of the above

~ ~ -1
lemma cannot be applied because (gb?w + gb%) is typically not smooth at i® anymore. In that

case, a more delicate analysis is needed. We do not investigate this issue but it is an interesting
open problem to find out whether results like Lemma 4.4 exist when ¢/ (i%)? + ¢;(i°)? = 0.8

4.2 Multipole moments

Finally, we have the tools at hand to define the Geroch-Hansen multipole moments. The
multipole moments are inductively defined tensors on S evaluated at i. We follow the
approach of Hansen [48].

Definition 4.5. Let (S, h) be an asymptotically flat Riemannian manifold with (§ , E) and

as in Definition 3.2. Let ¢ be a smooth function on S such that qz = Q_%¢ extends smoothly
to S = S U {i%}. The sequence (Pk) of symmetric trace-free covariant k-tensor fields of

¢ on S is defined by PY = <;~5 and

keNy

_ 1 __\STF
PRl — (DP’f = Sk(2k - Pl Rc> : (4.17)
for k € Ng = NU {0}, where T°TF denotes taking the totally symmetric and trace-free part
of T and Re denotes the Ricci tensor on (g, ﬁ) The 2¥-pole moment of ¢ is Pk‘io.

Finding the symmetric trace-free part of a covariant tensor field goes in two steps: first we
take the symmetric part and then the trace-free part. We denote the symmetric part of 7' by

8 At least, I am not aware of such results.
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TS. If T is a covariant k-tensor field, this is given by

1
T9(X1,...,X;) = o Z T(Xo(1) - Xo(h):
'UES}@

or in coordinates

S
T3 iy = Tiyiy) = %l Z T(r(l) Ao (k) (4.18)

€Sk

For the trace-free part, the explicit formula is a bit uglier. The trace-free part of a symmetric
tensor is of the form

TSTF Z Ak 7,1z2 ’ TS hj1j2 Tt hj2m71j2ma (419)

1.0k 'LQm 1%2m 12m+41-- 74]@)]1 ]Qm

with AJ = 1 and the other constants AF are characterised by demanding that h/172 TZ‘?Tf; = 0.

Then, these constants A¥ must be given by [18, Appendix A]

Ak — (CD7EI(2k — 2m - 1))
™o 2mml(k — 2m)!(2k — DI

Here, n!! denotes the double factorial. It is recursively defined by (—1)!! = 0!! = 1 and
nll =n-(n—2)Il. If n = 2m, this gives

2m)!! =2m(2m — 2)---2 = 2"ml,
and if n = 2m — 1, this gives

~ (2m)!

Cm—-Dl=02m—-1)2m—-3)---1= Sl

(4.20)

for m > 1. One of the nice properties of (—1)!! is that the formula for A%, also returns AJ = 1.

Before we continue our discussion about multipole moments, we want to observe a few prop-
erties about taking the symmetric trace-free part of a tensor. The first one is that taking the
symmetric trace-free part is a linear operation, which follows immediately from (4.18) and
(4.19). Secondly, we observe that the symmetric trace-free part of tensors of the form 7' ® h
vanish.

Lemma 4.6. Let (S, h) be a three-dimensional Riemannian manifold and let T be a covariant
k-tensor field on S, then (T @ h)STF = 0.
Proof. Let T be a covariant k-tensor field and write T = T ® h, then the symmetric part is

i1eiprn T(ilu-ik hik+1ik+2) = T(il...ik hik+1ik+2)‘
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Some combinatorics and the fact that 7° and h are symmetric give

=S
h(iliZ e hi2m—1i2m ’igm+1...ik+2)j1...j2m
2m g
- (k+2)(k+1) h(ilw o hi?m_lizmTi%nH---ik+2)j1---j2m72hj2m—1j2m
LRIz L pi2m=-12m
2m(2m — 2)
(k+2)(k + 1) (2
LRIz L pi2m—12m
dm(k —2m + 2)
(k+2)(k+1)
L RII2 L pizm—1d2m
(k—2m+2)(k—2m+1) g
(k+2)(k+1) h(i”é + iz i hi2m+1i2m+2Ti2m+3mik+2)j1~~~j2m

hj1j2 - h]’2m71j2m

'y

S o A h: .
2m—112m 12m+1---Zk+2)]1---]2m—3]2m—1 J2m—272m

- h;

7‘2""*17:2”"117;2m+1mik+1 |71 J2m—1 h\ik+2)j2m

LRIz L. pd2m—1d2m
_ 2m(2k — 2m +5)
(k—2m+2)(k—2m+1)
(k+2)(k+1) iz ”
LRIz L pizm-1d2m

- hi hiti2 ... pJem-—3jam—2

12m—172m = igpm 1 1...0542)J1.--J2m—2

he 7S

2m+112m+2" 19y, 43 ...ik+2)j1 ..Jom

So, we have two types of terms. In (4.19) applied to T, we sum over m. Note that the first
type of terms vanishes if m = 0 and the second type vanishes if m = L%J = L%J Only
taking the first type of terms and shifting the summation gives
152
(—1)™(k+ 212k — 2m + 3)1 2m(2k — 2m +5)
2 2mml(k —2m 4+ 212k + 3)11 (k+2)(k+1) (%

CRIVI2 L. pI2m—3i2m—2

) . S
hmm* 122m Ti2m+1 ck2)71-J2m—2

E
i 1)™k!(2k — 2m + 3)!!
2= amml(k — 2m)!(2k + 3)I1 (1%

]1]2 ]2 —1]2
L RIVI2 L pameidzm

- h. ) TS5

2m—+112m+2 Z2m+3'~~ik+2)jl ...Jom

which is precisely what we would get when summing over the second type of terms with a
minus sign. Therefore, the summations cancel against each other and 7~ 0. O

Thirdly, we want to know how the symmetric trace-free part behaves on (some) tensor prod-
ucts.

Lemma 4.7. Let (S,h) be a three-dimensional Riemannian manifold and let R and T be
covariant tensor fields on S, then

(Re TSTF) T = (RSTF o 1) = (R T)STT. (4.21)
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Proof. We only check that (RSTF ® T) STE _ (R® T)5TF and the other equality follows in

the same way. By (4.19), we see that T57F = 75 + (f ® h)S for some symmetric tensor T.
It is easy to check that (R ® TS)S = (R®T)®, which gives

(RoTSTF)® = (Re T5)" + <R® (f@h)S>S:(R®T)S+(R@f@h)s.

Taking the trace-free part yields, using Lemma 4.6,

~ STF
(ReTSTF)T = (R T)STF + (R@T@h) = (R T)5TF,

which proves the result. ]

In particular, this result implies that (TSTF )STF = TSTF  The last observation is about the
covariant derivative on symmetric trace-free parts.

Lemma 4.8. Let (S,h) be a three-dimensional Riemannian manifold with total covariant

derivative D and let T' be a covariant k-tensor field on S, then (D (TSTF))STF = (DT)STF.

Proof. From the definition of the covariant derivative on tensor fields, one can directly prove
that
Dx (T%) = (DxT)”.

For the total covariant derivative, we would also have to symmetrise on the left-hand side
once again, giving

(D(T%))” = (DT)®.

Breaking off the m = 0 term from the summation in (4.19) shows that
TSTF =75 4 (he T),

TSTF

for some symmetric tensor T="T5. Therefore, applying D to gives

(DTS = (D(1%)""" + ((he D)) - ((p7)?) Ty (he DT) .
— (DT)STF,

where we used metric-compatibility of the Levi-Civita connection in the first equality and we
used Lemma 4.6 in the last equality. O

We continue our discussion on multipole moments. In principle, the recursion (4.17) with
PY = 5 allows for any smooth function 5 on S. In that case, we pick ¢ = 9%5 and this
restricts to a smooth function on S because {2 is smooth and positive on S. However, it
does not really make sense to apply Definition 4.5 to such arbitrary functions. We want the
multipole moments to contain physical information, which is the case for the potentials of
Section 4.1.
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Definition 4.9. Let (S, h) be an asymptotically flat Riemannian manifold whose one-point
extension is (S h) Let ¢ and ¢ be the mass and angular momentum potential, respec-
tively, and suppose qﬁ A= 3 ¢4 extends to a smooth function on S for A= M, J. Then the
mass 2F-pole moment is the 2¥-pole moment of ¢, and is denoted by M* and the angular
momentum 2F-pole moment is the 2¥-pole moment of ¢; and is denoted by J*.

To make sure the mass and angular momentum multipole moments are uniquely defined, we
need uniqueness of the one-point completion (5, ?L) of (S,h) with conformal factor Q. We
assume that the conditions of Theorem 3.3 are satisfied so that there is still some freedom
left in the conformal factor. If ' is another conformal factor satisfying all condition in Defi-
nition 3.2, then we have Q' = af) for some positive function v € C* (§) with a(i%) = 1. We
want to know how the multipole moments transform under such conformal transformations.
A formula is given by Beig [11], but it only works for a very specific conformal factor. We
show that the result holds more generally:

Proposition 4.10. Let (S,h) be an asymptotically flat Riemannian manifold with one- e-point
extension (S hl) and conformal factor Q1. Let o be a smooth positive function on S with
a(io) =1 and let ¢ be a smooth function on S such that 51 = Q;%qﬁ extends to a smooth
function on S. Let ﬁg = a2ﬁl, then (g,%g) s also a one-point completion according to
Definition 3.2 with conformal factor Qo = af)y1. Let (Plk) and (PQI“) be the sequence of
symmetric trace-free covariant k-tensor fields of ¢ of Definition 4.5 with respect to ﬁl and Eg,
respectively. Then

k —_ 1\
A=Y (0) gD e (s aatton) L )

STF
(2m — )N )

where da®" = da ® - -+ ® da, the tensor product of n da’s and the double factorial is defined
by (4.20) and (1)1 =1.

Remark. Note that it does not matter whether we take the (symmetrlc) trace-free part (- )STF

with respect to hy or hs. There are equally many h;;’s and h%’s in each term in (4.19), s

in each term the a’s cancel. Therefore, it does not matter whether we use hy or hy in(4. 22)
because the metrics are conformally related.

Proof. We prove the result by induction. Let D; and D, denote the Levi-Civita connections
and let R01 and R02 denote the Ricci tensors with respect to h1 and hg, respectively. Since

Qo = af)y, we take gbg = 92 qS and gbg =« 2¢>1 also extends to a smooth function on S
because a(i’) = 1. Following Definition 4.5, we have PY = ¢1 and P = ¢2, so

1
PY)=a2P).
Moreover,

N 1 1
Pl = DyP0 = dPY = a~2dP? — §a—%P{3da —a7zpP! - 5of%Pfda,

proving (4.22) for k = 0,1. Assume (4.22) is satisfied for ¥ — 1 and k for some k € N and
we want to prove that it is also satisfied for £ + 1. Then we want to calculate PQ’“Jrl using
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(4.17), so we need EQPQk and Py '@ Rcy. Under conformal transformations, the Levi-Civita
connection on covariant k-tensor fields transforms as [73, Proposition 7.29]

DoPF(Xy, ..., Xpy1) = f)lPQk(Xl, o Xpg1) — ko X1 (@) PR(X, . XG)

—Za_lX )PF(X1, ., Xict, Xig1, Xigts - Xp)
+Za W Xpi1, Xi) Py (X1, .., Xi—1, grady, o, Xiqa, .- ., X).

When we take the symmetric trace-free part of 52132]“, the last summation vanishes by
Lemma 4.6. Therefore,

~ STF ~ STF STF
(DQPQk) - (D1P2k> - 2ka’1<P2k ®da) .

By the induction hypothesis, this gives

- STF KL kY (2k — 1)l .
k . o oy—(k—m)  —5—(k—m)
(D2%) _Z<m>(2m—1)!!( 2) “’
~ STF
. <(D1P{n ® da®<k*m)> (4.23)

- STF
+(k —m) (le ® D1(da) ® da®(k_1_m))

1 STF
—5(6k —2m + 1)a”~" (P{” ® da@’(k“—m)) )

where we utilised Lemma 4.7 and Lemma 4.8. The Ricci tensor transforms as [73, Theorem
7.30]

}/—%\ég = ]?cl — a’lf?l(da) —a ! (A',?HOZ)}VH + 20 %da ® da,
and taking the symmetric trace-free part gives

(]?02) o (]A%El)STF —a ! (51 (da))STF + 207 2(do @ de) T,

by Lemma 4.6. By the induction hypothesis for k — 1,

k—1
— \STF —1\ (2k —3)I! .
k—1 —(k—=1-m) ,—5—(k—1—m)
(P2 @ RC2> ( m ) 2m — 1! ( 2) «@’

OM

. <<P1m ® Rey ® da®(k—1_m)>STF

(4.24)
—at <P1m ® D1 (da) @ da®F—1=m)

STF
+2a72 <P1m ® da®(k+1_m)> > ,

)STF
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where we used Lemma 4.7. For PY*!, following (4.17), we have
STF
P+l — <D Py — fk(Qk ~- )P 1l® RcQ> =A+B+C,

where, from (4.23) and (4.24), A contains the terms with D; P and P{”@f?cl, B contains the
terms with Dj(da), and C contains the other terms which are of the form PJ" @ da®F+1-m),
Rewriting a little bit easily shows that B = 0 because for each m = 0, ..., k—1 the coefficients
cancel

(:) ((22:@__11))!!!! (=2)7 40k~ m) = k(2K 1) (kn_a 1) ((22:1__31))!!!! (27D =0,

as is easily checked by hand or by Mathematica. For A, shifting the summation for the
Rci-terms gives

k
B kY k=D i) <) (75 pm o g @(k—m)\ ST
4= 32 () o -2 (D s aa)

)STF

k-1
1 k—1\ (2k -1 —~
_ §k Z < - > ((2m — 1))” (_2)—(k—1—m)a—%—(k—l—m) (le ® Rey ® da®k—1-m)

K — N - STF
_ Z <k (Qk 1) (_2)7(k7m)a7%7(k7m) (D1P1m ® da@(kfm))

STF

k
1 k=1 (2k—1)! (b=m) 1~ (k—m) ( pm—1 o)
k; <m—1) (2m—3)!!( 2)” (P ® Rey @ da )

Then, we take the summations together and exploiting Lemma 4.7 gives

: 2k—1 ) 1 (o

STF STF
~ 1 —
: ((Dlle — Gm(2m — Pl Rq) ® da®(k_m))

Using (4.17) for m and shifting the summation again, we find

A= Z ( )M( 2)~ (=)o 3 (ko) (Pt g ook

STF
2m — 1! )

STF

i 2k — 1
= Z < >__3)),.( 9)~ (b+1-m) =g~ (t1-m) (P{” ® da®(k+1_m))

Finally, for C' we have

k
C = Z ( ) Qk - 1) ( 2)—(k‘+1—m)(2(k +m) + 1)a—%—(k+1—m) (le ®da®(k+1—m)

STF
2m — D! ) '
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We want to add A and C, giving three type of terms: the m = 0 term in C, the m = k 4+ 1
term in A and the terms for m = 1,..., k. For the latter, an easy calculation (by hand or by
Mathematica) yields

<mk— 1) (Bm = 1)+ (Z) 2k +m) +1) = <k;1>(2k+ 1).

Therefore, we have
Pl =A+C

_ (2]{3 + 1)”(_2)7(k+1)a7%7(k+1) (Plo ® da@(k+1)>STF N a*% (Plk‘i‘l

k
k+1\ (2k+1)! bl — L (hg1— _
9~ (k+1-m) (k+1—m) ([ pm ®@(k+1-m)
+Z:1<m>2m—1)( ) @’ <1®da )

k+1
-3 ( > 22k + 11)) (—2)~(k1=m) =~ (k1-m) (le ®da®(k+1—m))5TFH
m —_—
m=0
proving (4.22) by induction. O

Corollary 4.11. In the setting of Proposition 4.10, the multipole moments transform as

k
kN (2k —1)! (ke —m)\ STF
k| _ _oy—(k—m) ( pm ®(k m))
P = <m> =Y (P10 @ dal . (4.25)
m=0
Proof. The result follows readily from evaluating equation (4.22) at i® as a(i®) = 1. O

In Newtonian gravity, the multipole expansion depends on the choice of the origin. In the
relativistic setting, we can choose the conformal factor. Both transformations should represent
the same behaviour. Keeping « close to 1 around ¥, we see that the first-order correction of

the 2¥-multipole moment is proportional to C(Plk*1 ‘ . ® da|io). So, the first-order correction
(2

only depends on the 2k*1—multip\91e moment. This is the same as for Newtonian multipole

moments [41, 42]. At first, the Re-term in (4.17) might seem surprising as the coefficient in

an expansion are usually found by taking derivatives. However, this term precisely cancels

the correction term that is proportional to C (Plk_Q‘ L, ® D (do)
1

‘0>. So, if we want a similar
3

behaviour under conformal transformations as for changing the origin for Newtonian multipole
moments, we need the Rc-term.

In Newtonian gravity, we often pick the origin such that it lies at the center of mass. That
means, if the mass 2¥-pole moments is the first one that is nonvanishing, then the mass 2++1-
pole moment does vanish. Assume that the mass of the system is nonvanishing, then the
mass monopole moment M is nonzero. Then we want the mass dipole moment to vanish.
Corollary 4.11 yields

1
M = M} - L0 ol

so we want to take a such that

2
— M.
M}

dOé|Z-0 =
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This is always possible and there is still some freedom left in «. However, there is no freedom
left in the multipole moments anymore. We see that this completely fixes the multipole
moments MJ and J¥ by Corollary 4.11.

4.3 Axisymmetric spacetimes and the Kerr solution

It is typically very difficult to calculate multipole moments using the Geroch—-Hansen for-
malism. It is still easy to do the calculation for the Schwarzschild spacetime, but the Kerr
spacetime is already a hard job. The goal of this chapter is to calculate the multipole mo-
ments for the Kerr spacetime to arbitrary order. The main difficulty is that the recursion
step becomes computationally heavier each step. The tensors get more components and the
expressions get uglier. Luckily, we can simplify the calculations a bit when there are more
symmetries.

We start this section with naively starting to calculate the multipole moments for the Kerr
spacetime. After it turns out that it is too difficult, we study how the multipole moments
simplify when the spacetime is axisymmetric [48, Section 3]. In 1989, Fodor, Hoenselaers and
Perjés found a simpler algorithm to calculate multipole moments in axisymmetric spacetimes
[37], which we discuss afterwards. At the end of this section, we study an algorithm by
Béckdahl and Herberthson in 2005 [7] that simplifies the job even more. With the last
algorithm, we are finally able to compute all multipole moments for the Kerr spacetime.

Naively computing the multipole moments for the Kerr spacetime

We start with naively doing the calculation, for which we follow Hansen [48, Section 3]. In
Boyer—Lindquist coordinates, the Kerr metric looks like

gz—(l 2mr )2 _4marsin®§ r? 4 a’cos’0

2 N\ dtdp + — = 0% 7

r2 + a2 cos? 6 21 a2co? 8 YT omr t a2

(a2 +12)% — a(r2 — 2mr + a?)sin2 0
r2 + a2 cos? 0

(4.26)

+ (r? + a® cos? 0)dH* + sin? Ady?,

where m > 0 and a € R. Note that we are only interested in what happens for r > 2m. We
want to interpret m as the mass and a as the scaled angular momentum. The timelike Killing
vector field is £ = % for r > 2m, giving

2mr 2 — 2mr + a® cos? 0
r2+a2cos26 r2 4+ a2 cos? 6

A=—gu=1-

Y

and & = gepdzt. Therefore, the metric (2.2) on the observer space is

h=MAg+ fb ® fb = (919w + gipg)da! @ dx” = (—gugij + gtigtj)dl'i ® da?

2 2 2
-2 0
. mr At azeos 0 g, + (r* = 2mr + a® cos? 0)d6* + (r* — 2mr + a®) sin® 0dp>.
r? —2mr + a?

The Levi-Civita tensor is given by

e =+/—detgdt Adr Adf Adp = (12 + a® cos® 0) sin Odt A drr A dB A dep.
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By a tedious calculation involving Christoffel symbols, one finds, either by hand or by Math-
ematica, that the twist one-form is

4dmar cos 0 2ma(r? — a? cos? 0) sin 0
= d de 4.27
“ (r2 4 a2 cos? 6)2 rt (r2 + a2 cos? 6)? ’ (4.27)
and w = df with
o 2ma cos 0
 r24a2cos?6)’
Therefore, the gravitational field potentials are given by
1A% — f2 m(r —m)
4 r? —2mr + a* cos? 6
and
—f ma cos 6
¢y = =

2N 2 —2mr +a2cos2 6’
Now, we introduce a new coordinate R defined by
1 o\ 52
r=R " 1—|—mR+4(m —a*)R" ),
and the coordinate transformation can be inverted by

2(7" —m—Vr?— 2m7“+a2)

m2 — a2

R:

Observe that R is positive for 7 > 2m and R — 0 as r — oo. In the extremal case where

m = |a|, we have R = %m and we also see that E is positive and goes to 0 as r goes to

infinity. The region r > 2m corresponds to R < so we take 0 < R < With this

new coordinate we have

m+\al’ m+\ I

_o\2 _ —o\2 _
- (1 —1m? - a2)R2) — a®R’sin 0 . (1 —3(m? - aQ)RQ) — ®R’sin?0

— dR™ + — do?
R R
1—1(m2 — g2 2\2
+ ( 4(m72 )l sin? 0d<p2.
R
Define the function
=2
Q(§7 (9, 90) = B 2 ) (428)
\/(1 —1(m2 - a2)§2) — a2R’sin 6
for 0 < R < m+\ I and on this region we have
- Ich
h=0%h=dR + R do* + gy s’ fdg”. (4.29)

(1-f(m?—a?)R")?
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Now, we want to add a point at infinity, representing r at co. We already saw that this
corresponds to R = 0. So our manifold in (R,6,¢) coordinates is S = B L ‘(0) \ {0} =
m+|a

(0, miw) x S2, and our candidate for S is the open ball B_ 1 (0) of radius ﬁ centered

m+|a| +| I
at the origin in R3. Since spherical coordinates do not behave very nicely at the origin, it is
sometimes useful to give the expression in Cartesian coordinates as well. Let (z,y, z) be the
Cartesian coordinates corresponding to (R, 0, <p), then we have

x2+y2+22
VA= = @)@ + 2 +2)° - (2 + )

)

_ 2y )
h=Q%h= 1+ d
( (1= =)@+ ¢ + ) - @ (a? +y2>) ’
_ 2a%xy
(1= §(m? — a?)(2? + y? + 22))? — a®(a? + y?)

2,.2
+ {1+ dy? + dz*
( (1= §m =)@ +y? + ) —@(a? +y2>> T

CL2

(1= Jm? = @) a2+ 2+ 227 — (e + )

dxdy

= da® + dy® + d2* + (ydz — zdy)*.

First, we note that the denominator of € is nonzero in the region where R < +\ - We also
observe that both expressions can smoothly be extended to the origin, where (2 vanishes and
h becomes the Euclidean metric. Moreover, h is positive-definite on the open ball, so (S, h)
is indeed a Riemannian manifold. We also have

5Q|(0,0,0) =0,

and . ' 4 N
DDQ0,0,0) = 26idx"|(0,0,0) ® d2?|(0,0,0) = 2h(0,0,0)-

Therefore, (§ , ﬁ) satisfies the conditions for asymptotic flatness. In our new coordinates, the
gravitational potentials are

2

mR(1+ X(m? - a®)R")

VS P )
(1 —(m? - a2)§2) — a?R’sin20

and Y
maR™ cosf

PN — :
(1 —1(m2 - a2)R2) — a?R’sin?0

¢y =

Hence, the potentials on S defined by 5,4 = Q_%¢A for A= M, J become

)
<<1 — 1(m? — a2)ﬁ2)2 — a2’ sin? 0)

m(1 + 3(m? — R’

, (4.30)

N[N
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and

~ maR cos @
by = 5 (4.31)

o2 _ 1
((1 — X(m? - az)RQ) — a2R’ sin? 9)

Evaluating them at R = 0, shows that M = m and J° = 0. This shows that m is indeed
understood as the mass and there is no current monopole. We write the functions in Cartesian
coordinates. Taking the derivatives and evaluating at (0,0,0) shows that M' = 0 and J' =
madz. Therefore, —ma can be seen as the angular momentum pointing in the z-direction
and M! = 0 tells us that the mass is centered. It is doable to calculate the quadrupole and
maybe even octopole moments, but it becomes troublesome at higher orders because of the
complicated tensor expressions around (0, 0,0). Therefore, we need a smarter way to calculate
multipole moments for the Kerr space-time.

Geroch—Hansen formalism in axisymmetric spacetimes

We call a spacetime axisymmetric if there is a spacelike Killing vector field whose integral
curves are closed. The closed integral curves are the orbits when “rotating” along the vector
field. In stationary spacetimes, we want axisymmetry to nicely work together with station-
arity, leading to the following definition:

Definition 4.12. A stationary spacetime (M, g) with stationary vector field & is called az-
isymmetric if there exists a spacelike Killing vector field 1) whose integral curves are closed
and such that [£,1] = 0.

The fact that the Killing vector fields commute, implies that their corresponding flows/isome-
tries also commute. For the Kerr spacetime in Boyer—Lindquist coordinates, the stationary
vector field is % and the axisymmetric vector field is %, so they of course commute. The
Kerr spacetime is an example of an axisymmetric stationary spacetime.

Define another vector field n by

9(¢,§)
)

g1, &)
g9(§,¢)

Then 7 is a vector field on M such that L¢n = 0 because L¢p = Le£ = 0 and Leg = 0.
Moreover,
ICRS)

9(§,6)

so 7 is a vector field that lives on the observer space S. Furthermore, L,A = 0 because
Lyg =0 and L€ = 0, which implies that £,A = 0. Moreover,

E=p-

n=v+ §.

9(7775) - 9(%5) g(&ag) =0,

Lyg=d\g(¥,6) @& +& @d(Ag(v,€)),
because L¢g = L,9 = 0 and
L€ = -Ad(A'g(y,€)),

because L€ = L¢& = 0. Let h denote our standard Riemannian metric on S given by (2.2),
then
Loh=ACyg+ L& @& +& @ Le" =0, (4.32)
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Therefore, n is a Killing vector field on (S, h). We easily see that 7 is w-related to . Since
7 is surjective, we see that the maximal integral curves of i in S are precisely the images of
the maximal integral curves of ¢ in M. Since the latter are closed, the former must also be
closed. Therefore, (S, h) is axisymmetric with axisymmetric vector field 7.

For the twist one-form w given by (2.5) with twist potential f such that w = df, Cartan’s
magic formula gives

ﬁwf = i¢df = i¢w. (4.33)

In an asymptotically flat vacuum (or, for example, electrovacuum) solution of the Einstein
equations that is axisymmetric and stationary, the 2-dimensional planes orthogonal to ¢ and
1 are integrable [112, Section 7.1]. In that case, we have coordinates (¢, ¢, 22, 23) such that
&= %, P = % and the metric is of the form

-2 dw 0 0

A gop 00
v) = , 4.34
2 0 0 g2 923 (4.34)

0 0 g3 gs3

where the functions A, w, gy, 922, g23 = g32 and gs3 can only depend on z? and x3. Therefore,
we see that

1
VHE = ghr T, = 59“”9”‘7(3,)9@ — Do gpt)
vanishes when (u,v) = (2,3) or (i, v) = (3,2). Therefore,
Ty = Eupe P EVPET = 41, VHEY = 0. (4.35)

By (4.33), this implies that f is constant along the integral curves of 1. Together with LA,
this implies that

Lypa =0,

for A = M, J, where ¢p; and ¢ are given by Definition 4.1. Therefore, we also have
Lypa =0, (4.36)

for A=M,J.
So, 1 is a vector field on S satisfying (4.32) and (4.36). According to Hansen [48], the

conformal factor €2 can in that case be chosen such that there is a vector field i on S that
equals 7 on S, satisfies

and so that the axis vector field

is a unit vector field at i, meaning ﬁ(z, Z) ‘ 0T 1. Here, ¢ is the Levi-Civita tensor for (g, ﬁ)
7

and D is the Levi-Civita connection on <§ , E) From (4.32) and (4.36), we can conclude that

the gravitational potentials, and hence also the multipole moments, are invariant under the
flow of 1. However, the only direction which is left invariant under this action is spanned by

64



z. Therefore, the multipole moments must be multiples of (? X ® ?’)STF|Z-0. We define
the constants C* by

)STF (4.37)

Pl = (2k — 1)IC* (97 ® @2

70

Then we see that 1
cF = HP’“(E, s Do, (4.38)

because 2°(2) = 1 gives

K
—1)"k!(2k — 2m — 1)\ k!
Z( )"k M

STF
/\-b “ e /\JV P~ o f—
(Fo-e?) G 2mml(k — 2m)(2k — ) (2k — DI’

m=0

Here, the last equality follows by a tedious calculation [37, 107]. So, the information of the
multipole moments at i° is captured in those constants C*.

In case of the mass and angular momentum potentials, we write C¥ = m;, when using the
mass potential and C* = j;, when using the angular momentum potential. For the Kerr
spacetime, the calculations below (4.31) show that we must have my = m, jo = 0, m; = 0
and j; = ma. However, we still do not know the values for higher orders (although the
quadrupole and octopole moments are also doable to calculate using the naive method).

First algorithm to find multipole moments

Now, we know that the multipole moments in axisymmetric stationary vacuum solutions
of the Einstein equations can be represented by scalars, but it is still difficult to calculate
them. In this part, we discuss the algorithm by Fodor, Hoenselaers and Perjés [37] to do the
calculation.

In vacuum, we can simplify the metric in (4.34) to [112, Section 7.1]
g = —\dt — wdp)? + X (p2dp? + ¥V (dp® + dz?)), (4.39)

where & = % and ¢ = % are the stationary and axisymmetric Killing vector field, respec-
tively, and A, w and  are functions that only depend on p and z. These coordinates are
called the Weyl-Lewis-Papapetrou coordinates [87].

Then the metric A on the observer space S looks like
h = ¥ (dp?® + dz*) + p*de?.

For the one-point completion, we introduce variables p = pgﬁ and z = Then the

metric becomes

z
pPt22
(PP + ¥ (d? + dFP)).

If we take Q = p? + 22, we have
Oh = e¥Vdp? + 27dZ% + pPdp?.

We interpret the coordinates (p, ¢, z) as cylindrical coordinates. Then we want to add the
point with 5 = 0 and Z = 0 as i”. We need that ~ vanishes in the limit where p and Z tend
to 0. If 7 does not converge to 0, then the metric is typically not asymptotically flat [37].
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Recall the Ernst potential from (4.3)

L—X—if (1—if)? =A% 4\ .
I T s A (RS VRS WS Ve el Ul

This potential satisfies the Ernst equation [36, Eq. (11)]

(ppdE — 1)Adr = 205V g - Vo, (4.40)

where the bar indicates complex conjugation and V and A should be interpreted as the
ordinary gradient and Laplacian in three dimensions, where we see (p, ¢, z) as cylindrical
coordinates. Note that one can also conjugate everything and work with ¢g instead. For the
conformal potential gi) g =Q" 2¢)E, the Ernst equation gives [37, Eq. (12)]

(?QgEgiE — 1>E$E = 2$7E<7ﬂ%€gE Vg + 27opVop - Vi + 525)7 (4.41)

where we now interpret (p, ¢, z) as cylindrical coordinates. To calculate the multipole mo-
ments, we also need the Ricci tensor. By hand or using Mathematica, one can check that the
only nonvanishing components of the Ricci tensor for h are

B =50~ o o
Fo_ Loy 9y Oy
=T p0p 0pr 032
~ ~ 10y
Ry = Rs; 5

But we can write the derivatives of v in terms of A and w by the Einstein equations [112,
Egs. (7.1.24-7.1.27)]

Oy 1 (A [OA\\ 1 _yof[ow\® [ow\?
Oy 1 ,0A0A 1 1 ,0wdw

— = —p N ——. 4.42
9. 2° dp 0z 2P A dp 0z (4.42b)

Together with the twist one-form which is given by

EESCLCHN —AQa—wdz

df::paz ap

we see that the Ricci tensor can alternatively be written as [37, Eq. (13)]
~ 1 .
Rij = 153 (GiGj + GiGj), (4.43)

with D = Pépor — 1, Gi = zagz:: —p%E Gy = p3¢E + 3% 4+ G Gy =0,

Now, we are going to make an important assumptlon We assume that QSE is analytic. Since

qu is independent of ¢, this gives ¢p = Zz, =0 a;jp'z’ " and only even powers of p can occur.
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That is, a;; = 0 whenever ¢ is odd. Equation (4.41) constitutes a recursion relation between
the coefficients a;; such that they can all be expressed in terms of the constants ag; [37, Eq.

(16)}:
(r+2)2%a,125s = —(s+2)(s + 1)ay 542

+ Z Akt (apg(P* + ¢* — 4p — 5q — 2pk — 2ql — 2)
k+m+p=r
I+n+q=s

Tapio,g-2p+2)(p+2 - 2k) +ap2442(¢+2)(q+ 1 -21)).
(4.44)

Equation (4.44) tells us that if we know what happens on the z-axis (i.e., if we know the
coefficients ag;), then we know ¢g. In (4.44) and in [37, Eq. (16)], it is not completely clear
what the summation boundaries are. If we want to be precise, it is better to write write

(r+8)2ar2s = —(s +2)(s + 1)ar,s+2

+ Z Z Z aklamnam(p2 +q¢% —4p — 5q — 2pk — 2ql — 2)
k=

l
r s r—ps—q - (445)

p=—2qg=2 k=0 1=0
r s Tr—ps—q
+> > At Gmnap—2,q+2(q + 2)(q + 1 — 21)

where m=r—p—kandn=s—q—1I.

For a symmetric tensor T', we let T}, ; . denote the component 17 12.23..3 with a 1’s, b 2’s,
and ¢ 3’s. The order of the coordinates is (p,z,¢). With the given metric, the Christoffel
symbols can easily be calculated and one can check that the recursion relation (4.17) for the
multipole moments gives [37, Eq. (18)]

n 1 0 n—1 0 n—1
Pa,b,c_n< a Pa 1bc+b8 Pab 1,c

o oy
— <( (a —1) + 2ab)— 55 T 205 >ng Ly — (2ab+b(b— 1))a~(PA Dab1,c
) 0
+aa =GB aasre b0~ )P 5 (4.46)
—27y pn—1 1

tele=Dpe Py = 52n—3)(ala = DRuPI,,

~ L ~ ) STF
F2abR1p PR, b0 - DERPS )

Before we take the symmetric trace-free part, we can add terms of the form %(ilngiS...ik)
because they vanish when taking the trace-free part by Lemma 4.6. We want to do this in a

clever way. Define a collection of symmetric tensors (Sk) reNo by 58 00 = Pg 0.0> S; be = Pa1 bee
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and the recursion relation

Sabe = % (aaapsg—_ib,c + baazSg’giLc
- ((a(a — 1)+ 2ab)§% + zac;> Se 1 pe— (2ab+b(b - 1))252,25,0
(e~ DS+ b~ 1 ST
+c(c— 1),06_2752;11,1;,&2 - %(2” —3) (a(a - 1)§11‘S’2:22,b,c

+20‘[)]?12521:12,1;71@ +0(b - 1)E2252,g32,c>) + E(UQ?:%Q...QS...S)'

Note that this is just (4.46), except that we do not take trace-free parts anymore and we even
add an extra trace parts. The indices in the last term are again such that there are a 1’s, b
2’s and ¢ 3’s. Then the multipole moments are still found by taking the symmetric trace-free
part:
STF
z;l,b,c = (Sn)a,b,c .
We want to show that we can pick Q% 2 such that Sl =0if ¢ # 0. For n = 0, there is

13...0n
nothing to check and for n = 1, we observe that the gravitational potentials are independent

of ¢, yielding the result immediately. Suppose that we found Qf;?k such that S(’;b .= 0if

N
c # 0 for k < n. We take Q"2 such that QZ;% = 0 when ¢ # 0, then ;' . can only be
nonzero if ¢ = 0 or ¢ = 2. If we take

n—2 _ _n- 16727571—1
a,b,0 "5 a+1,b,0°

we indeed find S”, = 0if ¢ # 0 [37, Eq. (22)].Y So, we can always take Q" 2 such that

a,b,c

Sape = 01f ¢ # 0 by induction. Write S; = Sg,,_, ¢, then the tensors S™ are recursively
defined as 550 550
0_ 7 1_ 990 1_ 920
SO - ¢E7 SO - 85 ’ Sl 8ﬁ ) (447)
and [37, Eq. (23)]
1 0 . 0 oy a-— _
R —— 7Sn1 . 7Sn1 1—92n)—- — Snl
a n<aap a—1+<n a)az a +a<(a+ n)aﬁ ﬁ ) a—1
a’Y n—1 a’Y n—1
+(@a—n)la+n 1)8755“ +a(a 1)8—2511_2 (1.48)
Oy 1\ o1 1 ~ 9 '
t(n—a)(n—a-1) (8}5 -5 )sud - gn-3) (a(a — )Ry 8™

+2a(n — a>§1253__12 +(n—a)(n—a-— 1)§2QSZ—Z>>'

The next step is to show that S7'|,0 = 0 if a # 0. We only discuss the strategy how it is done,
we do not discuss the proof in full detail. It is possible to formulate the recursion above in
terms of Z', where Z]' is defined by S = p®Z}'. Then the idea is to count orders in p. Using

(4.43) and (4.42), it is possible to show that p%ﬁll, %El% égg, %g—% and p%g—% must also be

“There is a sign error in [37, Eq. (22)], but it is correct in [37, Eq. (23)].
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analytic [37]. Using induction, the recursion relation for Z? shows that Z is also analytic
(37, Eq. (26)]. In particular, Z is well-defined at p = 0 and S}|,0c = 0 if a # 0. So, for the
multipole moments we only have to determine the trace-free part of a tensor with only one
nonvanishing component, namely Sg|,0 = S5 5. Such a trace-free part has been calculated
by Fodor, Hoenselaers and Perjés, which gives [37, Appendix|

n!
P ol = WS&O-
For the constants C™ from (4.38), this gives
c" = éS” 4.49
T (2n -1 (4.49)

To summarise:

Theorem 4.13 (Fodor—Hoenselaers—Perjés algorithm). Suppose we have a stationary axisym-
metric, asymptotically flat vacuum solution of the Einstein equations and the Ernst potential
bp is analytic around i°, then the first m + 1 multipole moments can be computed using the
following algorithm.:

1. Find the coefficients ag; for j < m by op| - >0 ap; 2 ;
p:
2. Determine ai; for i+ j < m using (4.45);

3. Calculate the components of the Ricci tensor Eij and the derivatives of v in terms of
the power series for ¢p using (4.42) and (4.43);

4. Compute SI for n <m and a < m —n using (4.47) and (4.48), where we only need to
know ST up to degree pFZ! with k+1 < m —n;

5. Evaluating (4.49) forn =0,1,...,m and using (4.37).
Proof. See the discussion above and the article by Fodor, Hoenselaers and Perjés [37] O

The calculations are still quite heavy. The multipole moments have been expressed in terms
of ag; up to order n = 10 by Fodor, Hoenselaers and Perjés [37]. In full generality, it is still
hard to find a general expression for the multipole moments. However, for a relatively easy
solution as the Kerr spacetime, a computer program should be able to calculate the multipole
moments to very high order. For the Kerr spacetime in Weyl-Lewis-Papapetrou coordinates,
we have [61]

Sp(p=0)=—"— = mia)'z".

Therefore, ap; = m(ia)’. One might expect C" = agy,, but that is typically not true. For
the Kerr spacetime, however, it is true because ag;ap; — ao,i—1a0,j+1 = 0. Unfortunately, this
is still difficult to prove to arbitrary order. When decomposing the complex Ernst potential
into its real and imaginary part, we get the mass and angular momentum multipole moments
which turn out to be given by mor = (—1)*ma?* and jory1 = (—1)*ma®*! and the other
terms vanish.

69



Second algorithm to find multipole moments

There is also a more modern method that is often more efficient than the Fodor—-Hoenselaers—
Perjés algorithm to compute multipole moments due to Béckdahl and Herberthson [7]. Again,
we use Weyl-Lewis-Papapetrou coordinates (4.39). As we discussed in Theorem 3.3 and
Proposition 4.10, there is still some freedom in the conformal factor. Therefore, we now take
the conformal factor ) = (ﬁQ + ?2)6"‘_7 for some smooth function x that vanishes at i®. Then,

h=0%h = e (FPe 2dp? + dp? + dF?). (4.50)
Like we discussed at the end of Section 4.2, k is typically chosen such that the moments are

mass-centered.

We introduce new coordinates (r, ) such that p = rsinf and zZ = r cos§. Then the point 7°
corresponds to r = 0. Now, we are going to use some magic because we see

L0 0 a0 id
=5z Zaifpv_e <8r 7"80)’ (451)

as a vector field on S , including at . At i, however, the vector field 7 is clearly not well-
defined; it is a so-called regularly direction-dependent vector field. In this thesis, we will not
discuss such direction-dependent tensors, but they are very useful when working at spatial
infinity [4, 52].

The direction-dependent vector field 1 has a few properties.

Proposition 4.14. In <§, E) with h given by (4.50), the direction-dependent vector field n
defined by (4.51). Then
1. The vector field n is a complex null vector field: Eijninj =0,
2. For every covariant k-tensor field T' we have
STE g =T ™ o' (4.52)

3. The covariant derivative 15,777 1s parallel to n.
Proof. We have o
hign'i? = e**(1+ (=i)*) =0,
so n is indeed a complex null vector field.
By (4.19), we have T5TF = 75 — (T ® E)S for some symmetric covariant (k — 2)-tensor field

T. When fully contracting with 1, we contractions between (f ® E)S and 7 vanish because
hijninj = 0. Therefore, only the contraction with T survives and (4.52) follows.

The last property follows by a direct computation from (4.50). One finds

Dyn = 2(Lyk)n. (4.53)
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We can apply (4.52) to equation (4.37) for the multipole moments in axisymmetric spacetimes.
That gives

Pk S ) = (2K~ NICk(dzZ® - @ dz) T L) (50
— (2k — DYUCH(dZ(n)* = (2k — 1)NC*, '

Therefore, (4.38) tells us that the multipole moments are determined by their contractions
with 7.

Equation (4.54) gives an identity at i°, but we define functions f;, on S by
fr=PH(n,....m). (4.55)

So, we have f*(i%) = (2k —1)!!C* by (4.54). Moreover, the functions f,, only depend on 5 and
z. We can also contract the recursion relation for the multipole moments with n. Contracting
(4.17) gives, using (4.52),

. e 1 o
Sropr =nt gt (Dmlpﬁ...ik) — =k(2k — 1)n'n’ Ry fr—1

_ o . 1 o
=Dy fx — P, Dy(n™ - -n'*) — §k(2k — )n'n’ Rij fre—1 (4.56)

\V]

010k
- 1 o
= Dy fr, — 2k(Lyr) fr — §k(2k — )"’ Rij fr—1,

where we used (4.53) in the last equality. From the metric (4.50), one can easily find by hand
or using Mathematica that

— ~ ~ N2 9~ ~ /~ ~\2
it = 20(0) - (5)' 2055, (5) + ()
So, this expresses the recursion for the multipole moments in terms of functions that depend

on two variables, namely p and Z.

The next step is to go from a recursion on functions of two variables to function on one
variable. However, we need some analyticity assumptions again. Suppose v and ¢4 are
analytic around i¥ for A = M,J. Then v must pick up a factor p? [7, Lemma 3], from which
we see that %Dnﬁ is analytic. Therefore, by induction, each f, is analytic.

Somehow, we want to reduce the functions f, to functions of one variable. We do this by
picking the leading order.

Definition 4.15. Suppose g: R? — C is an analytic function around the origin. Then the
leading order part of g is the function gz : R — C defined by g1 (z) = g(z, —iz).

The analyticity assumption allows us to write

o0
9z p) = auZ'p,
k,l=0
on a disk Bs(0) for some 6 > 0. Using this power series, the definition g7, makes sense on

Bs/va (0)
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Lemma 4.16. Let g be an analytic function around the origin with leading order function
gr, then (Dng)L =g4.

Proof. This is a simply application of the chain rule. We have

O]

Now, we want to take the leading order part of (4.56). Note that we see f,, as a function of
(z, p) (with the coordinates in this order). By the same argument as in the Fodor-Hoenselaers—
Perjés algorithm, f, can only contain powers of Z and p?. Therefore, f is even in p and extend
its definition by f,,(z, —p) = fu(Z, p) if p > 0. Hence, we can apply Definition 4.15 to f,.

Let yn, = (fn), then
Yki1 = Yp — 2kK Y — %k(% — 1) Fyp_1. (4.57)
with
F= (1?0(77777))L =9 - ()" + %V’L — K+ (k)"
Moreover, we have
yk(0) = fx(0,0) = (2k — IC*.

There is still some freedom in the function x. If we manage to set F' = 0, the recursion
relation (4.57) simplies greatly because yi11 only depends on y; and not on y;_1 anymore.
Take « such that

u

x e2’yL(u) -1
kp(z)=—log|l1—z [ ———5——du—2C | +7L(2), (4.58)
0

for some constant C. Then we have

T o2vp (uw) _ 27, (@) _
) B f(] e o ldu—l— e - 1 +C ,
K/L(l‘) - T e2'yL(u)_1 + ’YL("'U)’
l—z [y “—7—du—2C

and
29} (z)e?7L(®) <f037 eZ'YLu(;‘)fl du + eQ'YL;(:)fl + 0)2
" z "
K (T) = 277 (w) _ + 2 +vr(2).
11—z x%du—l’c (1—xf0x 62wLu(;>_1du_xC>

After some easy manipulations we find indeed that F' = 0. Moreover, x (0) = C. This leaves
the freedom to adapt C such that the multipole moments are, for example, mass-centered.
Let z,(x) = e 2™2@)y (2). Then 2,(0) = y,(0) and (4.57) in terms of z, becomes

zhg1 (z) = e 20 @ 2 (1),
Note that the expression for £’ (x) can be rephrased as

2 (K] (x) =71 (x) + 1 = ere@l),
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The last step is to introduce a new coordinate. Let

u = xerr@—@) (4.59)
then
qu = err(@)—e(z) 4 m(f@’L(:c) _ 7Z(m))eraL(:v)*’YL(:z:) — err(@)+L(@) grr (@) —yL(2) — 2rL(2)
T
Therefore,
d"zo
2kr1(u) = 25 (u) = T (u).
Thus, the multipole moments can be found by
1 1 anO 1 dnyo
CF = ———ei(0) = o= (u) = ) 4.60
a0 = @ ae = e o (4.60)

Let us summarise it again in the following theorem.

Theorem 4.17 (Backddhl-Herberthson algorithm). Suppose (g , E) is given by (4.50) where

v is analytic and suppose ¢ is an analytic function on S. Then the multipole moments can
be calculated using the following algorithm:

1. Calculate vy, and, subsequently, ki by (4.58);

2. Calculate yo = ;Z;L,'

3. Introduce the coordinate u by (4.59);

4. Determine the multipole moments by (4.60) and (4.37).

Proof. See the discussion above and the article by Backdahl and Herberthson [7]. O
Using this quite simple algorithm, we are finally able to compute the multipole moments for

the Kerr spacetime to arbitrary order. We do it in the form of a theorem.

Theorem 4.18. The only nonvanishing multipole moments of the Kerr spacetime are
mop = (=1)* ma®*,  jop1 = (—=1)"ma®**,

for k € No. Here, my and j* are the constant C* in (4.38) for the mass and angular
momentum potential, respectively. If we work with the complex potential pc = ¢ +id s, they
can nicely be written as

¢, = m(ia)F,

where ¢y, is the constant C* in (4.38) for this complex potential.

Proof. In the naive method, we used the conformal metric (4.29) on S given by

-2

R
a?R’sin20

(1-§(m?—a®)R’)?

h=0h=dR +Rdo> + sin? fdg?.
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Let Z = Rcosf and p = Rsin6, then
h = dp? + dz* + pPe 2 dy?,

with

(. p) = 2log<1 (- m? - )P+ 52))2)

This is of the wanted form and we can work through the Backdahl-Herberthson algorithm,
even though we did not derive it from the Kerr spacetime in Weyl-Lewis-Papapetrou coordi-
nates. The gravitational field potentials (4.30) and (4.31) become

m(1+ 2(m? - a?)(p* + 22))

(1= §om? = a®) (7 + )" - 27?)

M(Zm =

3
4

and -
((1=3m2 - )3+ 22)* - a2?)

It is easiest to combine them into the complex potential

gJ(vav ﬁ) =

3
1

m(1+ 3(m? — a?)(p* + 2%)) +imaz

Q%&WLWW?+?W—¥?)

bc = pur +idy =

>

The leading order part of v is

yo(z) = %log(l + a2x2).

We want to change the conformal factor with a suitable x as in the discussion above. In
equation (4.58), there is the constant C'. By the naive method to calculate the multipole
moments, we already saw that the mass monopole moment is nonvanishing and the mass
dipole moment vanishes. Therefore, the moments are mass-centered and we want x/(0) = 0.
Hence, we take C' = 0. Then, (4.58) yields

_2,2)\2
kr(x) = %log(l + a2x2) — log(l _ a2x2) _ —llog ((1a:p)>

2 1+ a2x2

We have to change the conformal factor {2 correspondingly. The new conformal factor becomes
Q = e*Q). For the leading order part of gbc with the old conformal factor, one easily calculates

~ 1+iax
(¢c> (z) = m(1 +iaz) z
L (14 a222)1
If we change the conformal factor, we get

1 +iax)V1—a?z?  myV1—a%z?

1—a2z2 1 —ax

(@) = +/2(30) () = ™
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For the coordinate u, we have

X

_ (@) _
u=ge@ne = L

It is easy to verify that
m

o) = g

under this coordinate transformation. It is possible to expand this in a power expansion [7]

y(u) =m Z (k1N l;‘ DL (iau)".
k=0

From here, we conclude that
cr, = m(ia)F.

Taking the real and imaginary parts gives mass and angular multipole moments, respectively,
and we find that the only nonvanishing multipole moments are given by

may, = m(—1)"a*", Jors1 = m(—1)Fa® 1,
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Chapter 5

Thorne formalism

A coordinate-based way to define multipole moments is due to Thorne [107]. The idea is to
expand the metric into spherical harmonics, for which we need some suitable coordinates.
Then the multipole moments appear as the coefficients in the same way as we are used to
in electromagnetism and Newtonian gravity. Since the Thorne formalism heavily relies on
spherical harmonics, we start with discussing spherical harmonics in Section 5.1. Then we
introduce suitable coordinates and show how the metric decomposes into spherical harmonics
in Section 5.2. This defines the multipole moments. We conclude this chapter by calculating
the multipole moments for the Kerr solution using the Thorne formalism.

In this section, we will mostly use the same notation as in Thorne [107]: any repeated index
will be summed over (also if they are both lower) and all contractions are with respect to the
flat metric. The radial vector is represented by x with length r and the unit radial vector is
n= %x with components n; = %ﬂ For tensors with many indices, we use a multi-index. The
multi-index A; is (a; ...a;) and S4, should be read as the Sg,. q,-component of a tensor S,
but N4, = ng, - - -ng, for the normal vector.

5.1 Spherical harmonics

We want to decompose a covariant 2-tensor field into spherical harmonics. It is not sufficient
to consider scalar spherical harmonics, but we also need vector and tensor spherical harmonics.
They will all be introduced in this section in this order, for which we follow Thorne [107].

Scalar spherical harmonics

We start with scalar spherical harmonics. They arise when trying to solve the Laplace equa-
tion in spherical coordinates and applying separation of variables. Equivalently, they appear
when finding eigenstates of the orbital angular momentum operators L, and L2.

Definition 5.1. The Legendre polynomials are given by

—l,l—i—l.l—x) 1 d 2 ).

PM:M( 1T ) T g™
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for [ € Ny, and the associated Legendre polynomials are defined by

/2 dm (_1)m /2 l+m
PP @) = (<1 (1= )" By = S (1 ) 1)
for m € {—1,—l+1,...,l}, where only the second expression defines them for negative m.

The scalar spherical harmonics are defined by

m 20410 =m)! s om
Yl (9790): An M@ QO_PZ (COSH).

Working out the derivative gives

P"(z) = (~=1)™(1 - 2?)"/?

(17 @2y
LY — ) —m — 25)! '

For the scalar spherical harmonics, we use the polar angle 6 and the expression above shows

that =
17 (21— 2))! I-m—2j
P"(cosf "0 E m=sg.
" (cos 6) = ™ sin 51 'l—j T—m- 2]) 0s

The spherical harmonics satisfy some useful properties. For example, they are eigenfunctions
of the spherical Laplacian. Let L = —ix x V, then

2e _ apo (L O (. ,Of 1 of
Vf=-8a]= (maae 0% )t aZe 002 );

Together with some other properties, we have the following proposition:
Proposition 5.2. The scalar spherical harmonics

(a) are eigenfunctions of L2:
LY =11+ 1)y"™

(b) are orthonormal:
2w
/ / Y'™(0, ) YT (6, ) sin 0d0dp = 61y S
(c) have parity © = (—1):
Y@ — 0,0 +m) = (~1)'Y"™(0,0);

(d) transform under complex conjugation as
yim — (_1)myl,7m

Proof. See, for instance, [45, 56, 91, 107]. O
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Alternatively, we can also use symmetric trace-free tensors of rank /. In Cartesian coordinates,
the unit normal vector is given by n, + in, = e'?sinf and n, = cosf. So, we get

m

m+1u—my 17 (20 —2j)!

lm _ m
Y0, @) = (S = iy (e i)™ 1—30— —2))!

(nz)l—m—Qj

' M

= y,quNAla
(5.1)

where ykl K, 15 given by

|5
Ytk = Z ¢ (6(1k1 + Z5(2k1> T (571’m + Zézm)(sl?rmﬂ o '52172j5kl—2j+1kl—2j+2 Oy k)
=0
(5.2)
with

Clmj:(_1)m<2z+1(1—m)!>1/2 (—1)f (20— 2)!

A (I 4+ m)! (= )T —m — 25)!

for m > 0. The parentheses around the indices represents the symmetric part. For m < 0,
we see that y,?y K = (—1)"‘32,2’;_%. The tensors Y with —I < m < [ not only generate the

spherical harmonics of order [, but they also form a basis of the symmetric trace-free tensors
of rank [. This gives a correspondence between spherical harmonics and such tensors.

Theorem 5.3. There is a one-to-one correspondence between the scalar spherical harmonics
and the symmetric, trace-free tensors.

Proof. The proof is sketched above, see Poisson and Will [91, Section 1.5] or Thorne [107,
Section II.C] for more details. O

A symmetric, trace-free covariant [-tensor F can be written as
F = FaNay,.

Then the components of F can be expanded as

E:Fm‘ﬁ, (5.3)

m=—I

for some coefficients F'", because the tensors V'™ form a basis of the space of symmetric
trace-free tensors. The components of F are real if and only if Fb~™ = (—1)™Fim_ The
coefficients F!'™ can be found from F by [107, Eq. (2.13)]

pim —ap i Vi (5.4)

T @ '

It shows that a function on the two-sphere can both be written in a complex-valued expan-
sion of spherical harmonics and in an expansion of symmetric, trace-free tensors, and the
coefficients are related by equations (5.3) and (5.4).
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Now, we turn on the radial coordinate again and want to solve the Laplace equation. A
general solution is of the form

F(r0,0) =Y (Flmr*““) + Glmrl)ylm(e), ©).

I,m

If we assume the field converges at oo, we have G = 0 and in terms of symmetric, trace-free
tensor fields, F is of the form

7Al

o= Sau(l)

where

0 0

T 9rzm Oz

3

Vector spherical harmonics

We have discussed scalar spherical harmonics, but in general relativity that is not sufficient
because the fundamental object, the metric, is a tensor and not a scalar potential. The next
step is to decompose three-dimensional vectors using so-called vector spherical harmonics.

Definition 5.4. Let &Y = e,, ¢! = —%(% + iey), and &1 = %(egc — iey). Then the

pure-orbital vector spherical harmonics are given by

U 1
YOO, p) = 30 >0 (Wmm [ Im)e Y™ 0, ),
1

m/=—l' m/ —=—
for ' =1—1,1,1+ 1. Here, ("l'm"m’ | Im) are the Clebsch-Gordan coefficients [107].

They are especially useful because they are again (vector-valued) eigenfunctions of the spher-
ical Laplacian, which is easily seen from Proposition 5.2. This proposition translates to the
following result for pure-orbital vector spherical harmonics:

Proposition 5.5. The pure-orbital vector spherical harmonics

(a) are vector-valued eigenfunctions of L2:

L2Yl’,lm _ l/(l, + 1)Yl’,lm,
(b) are orthonormal:

21 s -
/ / YleM(& ()0) X Yl':L'M'(O, 80) sin 9d9d§0 — 511/5LL’5MM’;
0 0

(¢) have parity m = (—1)'+1:10

Ym(n — 0,0 + 1) = —(=1)' Ym0, o),

10The extra minus sign represents the inversion of sign of the Cartesian basis vectors under parity inversions.

79



(d) transform under complex conjugation as

Yiim — (_1)l'+l+m+1Yl’,l,—m'
Proof. See Edmonds [35] or Thorne [107]. O

There are also other types of vector spherical harmonics. The main advantage of the pure-
orbital ones is that they are eigenfunctions of the spherical Laplacian, but they are neither
purely radial nor purely transverse. Therefore, we want another type of vector spherical
harmonics for describing radiation.

Definition 5.6. The pure-spin vector spherical harmonics are defined by

1 1
YE,lm — \/mYl—l,lm + \/ZYl—l-l,lm — Tvylm — _nx YB,l?’)’L7 5.5a
\/2l+1( ) I(1+1) ( )
YBIm = gybim = Lyl — g YT (5.5b)

I(1+1)
1

yRIm _ (\/Zylfl,lm _ \/mYlJrl,lm) — pylm. 5.5¢
V20+1 ( )
Here, V denotes the Euclidean gradient operator and L = —ix x V is the angular momentum

operator.

We see that Y™ is purely radial and Y24 and YB4" are purely transverse. This property
makes them very useful for describing radiation and defining multipole moments. Again, we
have a version of Proposition 5.5, but we have to forget about the property that they are
eigenfunctions of the spherical Laplacian.

Proposition 5.7. The pure-spin vector spherical harmonics
(a) YEI and YBI™ are purely transverse and Y™™ is purely radial;

(b) are orthonormal:
27 s s
/ / Y0, 0) - Y70, ) sin 0d0dp = 1.0 Sy
0 0

(c) YEI™ and YR have parity 7 = (—=1)! and YB™ has parity 7 = (—1)!*1;

(d) transform under complex conjugation as
YJim — (_DmYJ,h—m.
Proof. See Thorne [107]. O

The index R is clear because it indicates the radial direction, and for the transverse parts
we have both E and B. But Y/ and Y5 have opposite parity, just like electric and
magnetic fields. For YZ4™ we recognise the same parity as for electric multipoles and for
YB4m the same parity as for magnetic multipoles [56, Section 9.8]. Therefore, we say Y Bobm
has electric-type parity and YZ*™ has magnetic-type parity.
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Like we discussed for scalar spherical harmonics, the pure-spin vector spherical harmonics can
also be expressed in terms of symmetric trace-free tensors. Inserting equation (5.1), we get

T
E,lm l
)/rj = (y]Al 1 Al 1) ’ (568‘)
/ l
B7lm
Yj = I+1 5Jpqnpqul Na; (5.6b)

Y/ = YN, (5.6¢)

where ()7 means taking the transverse part of the tensor. The transverse part of a covariant

k-tensor T is given by [107, Section I.C]
sz; gL (51'1]'1 - ni1nj1) to (5ikjk - niknjk)lemjl'

Similarly, we can also express the pure-orbital vector spherical harmonics in terms of sym-
metric trace-free tensors, giving

—10m
Y, = \/%Hym Na_,, (5.7a)
[ 1
l,Im
Yo = - I+1 Equ”pqul Nag s (5.7b)
I+1,lm [20l + 1
Y}"r — l-|—71 jy Ny, — 2l+1y Ay 1 A |- (5.70)

An arbitrary vector field that only depends on the spherical coordinates can be expanded in
terms of pure-orbital or pure-spin vector spherical harmonics. Say

[e's) l
_ Im~sE,lm Im~/B,lm Im~/R,Im
V—§:§:<E yBim | gimyBim 4 plmy )
=0 m=-I

Alternatively, we could also use (5.6) to write
Vi = Z( JAI- lNAl + EquanquleAlfl + anAlNAl)’

for some symmetric trace-free tensors £, B and R. Their coefficients must be given by

lm
\/l+ Z yAl’
! Im~slm
BAZ_\/Hlmz_:,B YA

l
RAZ — Z leyfqm

m=—I
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The advantage of the pure-orbital vector spherical harmonics becomes apparent when we
want to solve the Laplace equation. An arbitrary vector-valued solution is of the form

oo 141
V(r,0,¢) = Z Z Z (Fl dm—(U+1) | Gl im l’)Yl lm(9 o).
1=0 I'=1—1 m=—1
If we, again, assume the field converges at infinity, we have G'*™ = (0 and in terms of

symmetric, trace-free tensors, a general solution is of the form

> 1 1 > 1
V}(T, n) - Z (BjAz—1 <r> + equCqu—l <T> ) + Z DAZ <7‘> :
=1 JAIZ1 PAI—1 1=0 JA

Tensor spherical harmonics

We discussed two different versions of vector spherical harmonics, which both have their own
purposes. The last step we need for the ij-components of the metric tensor are spherical
harmonics for 2-tensors in three dimensions. For tensor spherical harmonics, we can also
define both pure-orbital and pure-spin versions. They are due to Mathews [76] and Zerilli
[120].

Since the metric is symmetric, we can restrict ourselves to symmetric tensors. Then there are
only 6 linearly independent tensors. A suitable basis is given by

1 1

Z Z (11m'm"" | 2m>§m ® &,

=—1m/'"=-1

form=-2,-1,0,1,2, and

37125 = Z Z (11m'm” | 00)e™ @ ™",

m/'=—1m/"=—1

Definition 5.8. The symmetric pure-orbital tensor spherical harmonics are
T2l/,lm — Z Z l 291! m"! ‘ lm>yl m’ tm
m/=—1' m!"=—2
forl! =1-2,1—1,1,l+1,1+2, and
TOl,lm — —Ylm3_1/2(5.

The pure-orbital tensor spherical harmonics T '™ are the antisymmetric ones, so they are
not of interest to us. The following proposition presents its most important properties:

Proposition 5.9. The symmetric pure-orbital tensor spherical harmonics

(a) are tensor-valued eigenfunctions of L2:

LQT)\l/,lm — l/(l/ + 1)T>\l/7lm,
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(b) are orthonormal:

27 pm -
/ / T,?\jl’LM(e, QD)T;\Jl LM (9, QD) sin 0d9dgp = (5>\/\/5”/5LL/5MM/;
0 0

(¢) have parity m = (—1)":

TV — 0,0+ m) = (~1) TV, )

(d) transform under complex conjugation as

T JIm — (_ 1)l/+l+mT)\l',l,—m )

Proof. See Mathews [76] or Thorne [107]. O

Like for vector spherical harmonics, the pure-orbital harmonics are mostly useful when solving
the Laplace equation, but not necessarily when describing radiation. This leads to the pure-
spin harmonics.

Definition 5.10. The symmetric pure-spin tensor spherical harmonics are

TLOIm — yimy @, (5.8a)
TTO,lm — 2—1/2Ylm(6 - n ® n)7 (58b)
s s
TELIm _ \/§(n ® YE’lm> = (—2n X TBl’lm> : (5.8¢)
2 STT s
TE2im _ —( YE,lm) _ (_ TB2,lm> 8d
EDIETA " ’ (050
S s
TBLIm _ \@(n ® YB,lm) _ <2n » TBum) : (5.8¢)
9 STT S
TB2im _ —( YB,lm) _ ( TE2,lm) . 5 8f
—ir\"V n (580

Here, S means the symmetric part and TT" the transverse traceless part. The transverse
traceless part of a 2-tensor field T is
TT
Elig = (5i1j1 - nilnjl)(5i2j2 - ni2nj2)lej2 - 5(52'11'2 - nilniQ)(5j1j2 - njlnjz)lejQ'

Like we have done in (5.5a) for vector spherical harmonics, one can express the pure-orbital
tensor spherical harmonics and pure-spin tensor spherical harmonics in terms of one another.
We will not present the relations here; they can be found in Thorne [107, Equations (2.30)
and (2.33)].

Proposition 5.11. The symmetric pure-spin tensor spherical harmonics satisfy the following
properties:

TTO,lm

(a) T s pure longitudinal and 18 pure transverse;
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(b) they are orthonormal:
2 TS
/ / T T;ZS P9, ) $in 0dOde = 87508550 Sy

(c) TEOIm T0Im pELIm gpq TE2Im phaye parity 7 = (—1)!, and TEY™ and TB2M™ have
parity T = (—1)1;

(d) they transform under complex conjugation as'!

TJSIm — (_1)mTJS,l,—m
Proof. See Thorne [107]. O

Again, we also want to express the tensor spherical harmonics in terms of symmetric, trace-
free tensors. Then we have

T = nyn; VTN, (5.9a)

117;0 dm — 9= 1/2(5@,], _ ninj)yZ?NAz? (59b)

El,lm 21 m -

J—;J = \/:(n(lyl')AllNAl—l - nln]yf% NA[)? (59C)
Bl,lm 21 Im Im

T “ Vit (n(iej)pqnpququAzq)v (5.9d)

g2im _ | 20— DL r

CZ—IL] - (l + 1)(l + 2) <y7,jAl 9 Al 2) ) (596)
B2lm _ 21— 1) m T

T =\ ey (e Naca) 590

The expression for the pure-orbital tensor spherical harmonics can be found in Thorne [107,
Equation (2.40)]. Any symmetric 2-tensor field on the 2-sphere can be expanded in terms
of the pure-orbital or pure-spin tensor spherical harmonics. In particular, solutions of the
Laplace equation can be written as

U(r,0,¢) = Z <F/\l/’lm7“_(l/+1)+G/\llvlm7«l’>T>\l’,lm_
NULm

Again, assuming the solutions converge at infinity, in the form of symmetric, trace-free tensors

we get
oo 1 1 o
n) = Z dij€a, <r> + Z( ij A2 ( > + €pgiGigAr (r) )
=0 Aj_o PAI_2

7

S ()
1 1
Slean(t)  veman(l) ) exall)
JAL-1 "/ ipAi 1=0 "/ jkA,

" Note there is a typo in Thorne [107, Equation (2.36b)].

)
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5.2 Multipole moments

In Thorne’s formalism, the idea is to introduce a very special coordinate system and in that
coordinate system the multipole moments can simply be read off from the metric. This section
consists of two parts. First we define the multipole moments using a very strong condition
on the coordinates. In the second part, we see that the condition on the coordinates can be
relaxed if we only need the first few multipole moments.

Definition of Thorne’s multipole moments

Like in Section 4.2, we will consider a stationary asymptotically flat spacetime (M, g) with
stationary vector field &, but the we use a more coordinate-based definition of asymptotic
flatness and in four dimensions. Recall from Section 2.2 that the observer space S is a
Riemannian manifold consisting of the flow lines of £ and comes with a natural projection
w: M — S.

Definition 5.12. A stationary spacetime (M, g) with stationary vector field £ is called
coordinate-wise asymptotically flat if there is a bounded closed subset K C S of the observer
space and a diffeomorphism ®: M \ 7~ !(K) — R x (R*®\ Bg(0)) such that if we understand
® as a chart with Cartesian coordinates (xo =t 2t 22, x?’) on the codomain, then % =¢ and
Jap admits a convergent power series representation

oo
|
9o =105+ Y —0ag: (5.10)
=1

where r = \/(acz)2 + (22)® + (23)? and glaﬂ is independent of r. In the spherical coordinates

(r,0, ) corresponding to (xl, z2, :z3), géﬁ is only allowed to depend on 6 and ¢.

Harmonic coordinates (z%) on (M, g) are defined by
Ogz® = 0.
Equivalently, define the metric density
g* = \/—det gg*”,

then harmonic coordinates in stationary spacetimes are characterised by the stationary har-
monic gauge condition
0;9% = 0. (5.11)

Since % is a Killing vector field, the metric components are independent of z°. In the actual
gauge condition, the sum in equation (5.11) over j should also sum over 0, but that term does
not contribute here when we keep the first coordinate vector field to be a Killing vector. To

get such coordinates, we perform a coordinate transformation of the form
ya — @ + fa(.%‘l,$2,333),

where each f® can also be written like a convergent power series as in (5.10) (where we
replace 7,3 by a constant). Equation (5.11) gives a system of four second order partial
differential equations, where only ', 22,23 appear as variables because the original metric
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is independent of z° and 2" does not appear in the coordinate transformation of the metric.
Since the functions f¢ are independent of x°, the coordinate vector field % is left unchanged
and is still the Killing vector field. The power series representations of f* show that (5.10)
is still satisfied in the y“-coordinates.

Using these coordinates, we want to find an expression for the metric. In Thorne [107], this

is done by expanding the gravitational field = n*® — g*8. The expansion works in the
so-called “weak-field near zone”, which is defined using some characteristic parameters. The
first one being the mass, the second one being a length scale characterising the nonspherical
deformations and the last one being a characteristic time scale on which the multipole mo-
ments change. The expansion is done in powers of these characteristic quantities and the order
of which spherical harmonics appear. An expression can iteratively be found by calculating
the first correction and then using Einstein’s equation and the harmonic gauge to calculate
next terms. Because of stationarity, we can simplify the expression a bit. In particular, no
time derivatives of the multipole moments will appear, no logarithmic terms in r will appear,
the metric will be time-independent and the characteristic time scale will not appear. The
metric tensor g,s can also be decomposed in spherical harmonics, and the coefficients are
closely related to the ones for h,s. Executing this procedure gives the following result.

Theorem 5.13. Let (M, g) be a stationary, coordinate-wise asymptotically flat vacuum so-
lution of the Einstein equations (without cosmological constant), then the metric in mass-
centered harmonic gauge can be written as

oM 2M?2 X1 /2020 -1)!
goo = —1+ 2 2 ] < 0l Ma, Ny, + 5121 |, (5.12a)
| 41(20 — 1)!!
goj = Z ] (— I+ 1) €jka; TkA,_ Na, + Sz—1>7 (5.12b)

=1

2MY\ M2 1 (2020 -1)!
gij = (Sz'j <1 + T’) + 7((5@] + ninj) + ZEZ; Tl—i-l < T MAlNAl(Sij + Sl—l) . (5.120)

Here, S;_1 is a symbol denoting a quantity that is independent of r, and the angular dependence
s contained in spherical harmonics of order at most [ — 1.

Proof. A very brief sketch listing the main steps is given above, see Thorne [107, Section X]
for the proof. O

In (5.12), we see the coefficients M 4, and J4, appearing. They are the multipole moments.
It is not immediately clear the multipole moments are well-defined because there can be more
suitable coordinate systems, but we postpone that discussion to Theorem 5.16. Nevertheless,
we do already define them.

Definition 5.14. Thorne’s mass 2'-pole moment is M., in (5.12a) and Thorne’s angular
momentum 2'-pole moment is Ja, in (5.12b).

The mass is contained in gop component and the current in the go; components where time
and direction are mixed. In ggo, we use scalar spherical harmonics and in go; we use vector
spherical harmonics for the decomposition. In g;;, we need tensor spherical harmonics, which
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are appearing in the term My, N4, in equation (5.12¢). Since the mass multipole moments
can also be read off from gy, where we only need scalar spherical harmonics, tensor spherical
harmonics are not very important for applying the construction. However, they are important
in deriving the form of the metric as we see they are appearing the g;; components.

ACMC-N coordinates

In Theorem 5.13, we need mass-centered harmonic coordinates that preserve the coordinate-
wise asymptotic flatness condition from Definition 5.12. They are usually very hard to find.
Luckily, there is a broader class of coordinate systems for which we can still find the multipole
moments up to some finite order. This new class of coordinate systems are the so-called

ACMC-N coordinates, which stands for asymptotically Cartesian and mass centered to order
N.

Definition 5.15. A coordinate system (a:o = t,xl,xz,x3) is ACMC-N if and only if the
metric components are independent of ¢ and have the following structure when decomposing
the metric in spherical harmonics [107, eq. (11.1)]:

N

2M | So 1 (2(20— 1)
900——1+T+742+Zrl+1< I Ma,Na, + 5121
1=2
1 (202N +1)! _ 1
PNT2 ( (N+1) May, Nay,, + (poles with [ # N + 1)> (5.13a)

1
+ (terms that die out faster than TN+2>’

N
1 41(20 — HN . .
goj = Z S| (— ( ) €jkayTkA,_ Na, + (l pole with parity ©= = (—1)l> + Sll>

P (I+1)!
1 4(N +1)(2N + 1)
+ rN+2 <_ (N +2)! 6jk’aN+1jkANNAN+1

—l—(N + 1 pole with parity = = (—1)N+1) + (poles with | # N + 1))

: 1
+ <terms that die out faster than 7“N+2>’
(5.13b)
Yo 1
Gjk = 0jk + Z rlﬁsl + m(any angular dependence)
1=0 (5.13c¢)
: 1
+ <terms that die out faster than 7“N+2)

A coordinate system is ACMC-co if it is ACMC-N for every N € Ng.

Comparing equations (5.12) and (5.13), we see that the harmonic coordinate system is ACMC-
N for any N, so it is ACMC-o00. For ACMC-N coordinates, we can read off M4, and Jg,
for | < N 4 1. So, if we want to know only the first few multipole moments, it suffices to get
coordinates giving a metric of the form (5.13) instead of (5.12). More precisely, if we want to
know the multipole moments up to order 2!, it suffices to find ACMC-(I — 1) coordinates.
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We need to check that the multipole moments we read off from the metric are independent
of the chosen coordinates. Otherwise, Definition 5.14 would not be well-defined. If we man-
age to show that the multipole moments up to order N + 1 are independent of the chosen
ACMC-N coordinate system, they are also the same for any harmonic asymptotically flat
coordinate system. Hence, it is sufficient for well-definedness of the multipole moments to
have independence of the ACMC-N coordinate system for any N.

Theorem 5.16. The coefficients M4, and Ja, for | < N 41 in (5.13) are independent of
the chosen ACMC-N coordinate system.

Proof. We follow the approach by Thorne [107, Section XI.C]. Suppose we have ACMC-N
coordinates (z%) and apply a coordinate transformation

ya — @ + fa($1,$2,333),

for some functions f%, such that (y“) is also in the class of ACMC-N coordinate systems.
We do not allow f to depend on z° because we want % = 8%0. We expand fo = 703 fP
in powers of r, where we know that powers of positive order cannot appear because the

asymptotic flat form of the metric must be preserved. So,

— 1
fa($1,$2,$3) = Z Tn+1fg(97¢)7

n=-—1

for some functions fJ that are independent of both time and the radius. Then, we expand fg
in the scalar spherical harmonics Y where [,, denotes the maximum order of [ that appears
in fi" and we expand f/" in the pure-orbital vector harmonics YjHJ’lm, where [,,; denotes the

maximal order. Write

In R
=2 1"0.0),  f7=>> £709)
=0

J=—11=0

where f! contains the terms Y™ and f}LJ ! the terms le+‘]’lm for all possible m.

Let hag(y) = gap(y) — Nap, and expand it in the same way as above where we view them as
functions(!). So,

hag(x) =Y _r~TDR2 (0, ),

n=0

and

K,

Here, we use the scalar harmonics for the 00-component, pure-orbital vector harmonics for
the 0j-components and the pure-orbital tensor harmonics for the jk-components. Because
we have ACMC-N components, hgﬁ contains only poles of order at most 2! with [ < n for
n < N. For low n, we even have that h8j = 0 and h{, contains contains monopoles. This
follows from the fact that there is no angular momentum monopole moment and no mass
dipole moment in Thorne’s formalism.
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The metric components in the two coordinate systems are related by

Ay™ oyP
gul/(x) = Tiuaiygaﬁ(y(x)) =N + h;w(x) + a;w(x) + b;w(x)a
where
(@) = (0% + £ ) (6% + 17 Y hasa + F(@)) = (@) + 1 For
and

bw/($) = fu,u + f,u,u-

Here, the comma notation means the covariant derivative with respect to the flat metric. That
means, it is just a partial derivative if we use Cartesian coordinates, but the flat Christoffel
symbols do appear in spherical coordinates for example. We also expand g, a,, and b, in
powers of % Because we are working in ACMC-N, we see that gy, obeys the same conditions
as hj,,, showing that ay,, + by, also must obey the same rules. That means, agj + bgj =0,
ado + biy contains only monopoles and for the other terms ay,, + by, contains only harmonics
of order [ < n.

Looking at the expression for a,,(z), we see that agy = 0, so we have that bgj = 0 and b,
and b?k are only allowed to contain monopoles. Using the expansion for f we have b80 =0,

1

0o _ —11
by =Y rfoj
=0

and
1 lens

= 303 U )
J=—1 1=0
The only constant scalar harmonic is with [ = 0 and therefore [_; = 0 in order to fulfill the
condition bgj = (0. For b?k there is a bit more freedom and after carefully comparing the
spherical harmonics it turns out that we need [(_yy—1) =1 and [(_)g = [(_1); = 0. Because
ady + by = 0, we already see that the mass monopole moment M is the same for both
coordinate systems.

As n increases, there are more terms and the situation becomes more delicate. For n = 1,
we find that a(l)o + béo can only contain monopoles and a(l)j + b(l)j and ajl-k + b]lk can contain
monopoles and dipoles. Still bgg = 0, so we are left with

1 1(71)1 1
_ _ _ —1)(-1)1
a(l)o — 2 Z Z fj 1Jl(T 1h80)’j _ _( Z fj 1J0nj + f]( )(=1) nj) h80,

J=—1 1=0 J=-1

where we also used that h80 is constant. This must be a monopole, but the last term has
[ = 1. This is not allowed and therefore we must reset [(_1)(_1) to zero as well. Repeating
the procedure for the other components of a}w + b}w shows that lp = 1 and lp; = 1 [107,
Eq. (11.17)]. Since acl)j + btl)j only contains harmonics of parity 7 = (—1)!, the current dipole
moment is the same in both coordinate systems. Since both systems are mass-centered, the
mass dipole moments both vanish.
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Up to now, we have shown that l,—1 = [,,—1); = n for n = 0 and n = 1. By induction we
want to show that this holds for all n < N. Assume it holds for 0,1,...,n — 1, where n < N.
The term ajj, contains basically two types of terms, the first type coming from f®,fa,, and
second one coming from heg(x + f(x)). More precisely, the first type of terms are of the
form fﬁl‘hll ]2';2‘]212 with p; + p2 + 3 = n. This gives harmonics of order [ < I; + [y and we
must have p;,ps < n —2, s0l < n— 1. These terms only contain poles of order at most
n — 1, which is fine. The second type of terms are of the form f]ﬁl‘]lll oo PRl paK L ity

Jk
p1+ -+ pr + 2k + g = n, where k > 1. This consists of harmonics of order

I<h+-Fh+tL<lpn+-Flpnt+te<p+--+ppthk+qg=n—-—k<n-1,

where we used the induction hypothesis to conclude I, 7, < p; + 1. Similarly as above we
have b, = 0,

ln—l
b= TN
=0
and
1 l(nfl)J
n n —n p(n—=1)Jl —n p(n—=1)J
A D S i (Cans S WA oy i )
J=—1 1=0

Because we are using ACMC-N coordinates, ay,, + b, is not allowed to contain poles of
order more than n. By the form of aj,, the same must hold for b}, and this tells us that
ln—1 = l(n—1); = n. This proves the induction and we see that both coordinate systems must
have the same mass and current pole moments of order n. For the current moments we use

the parity of the terms appearing in ay, + by, again.

Now, we have proven that the multipole moments are the same for n < N, but we were also
able to define them of order N + 1 in equation (5.13). Still aﬁ/jl only contains harmonics
of order at most IV by exactly the same reasoning, but the characterization for the orders
appearing in an,“ + be,H does not need to hold anymore. Since the ﬁ—terms in equation
(5.13b) also allow for higher order poles and only care about the pole of order N + 1 and
bff,frl only contains poles with parity 7 = (—1)!, the current (N + 1)-pole moment can still
be read off. The same holds for the mass (N + 1)-pole moment because bé\([)+1 = 0. Therefore,
the multipole moments of order at most N + 1 are independent of the coordinates when using
ACMC-N coordinate systems. O

In equations (5.12) and (5.13), we used the spherical harmonics in terms of the symmetric

trace-free tensors. Alternatively, we can also use the scalar and pure-spin vector spherical
harmonics, which are related by equations (5.1) and (5.6). Then the metric components in
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an ACMC-N coordinate system become

(20 —1 20— 1)1 %
m =1+ 553 Zlﬂ( (i) p3 Mlmylm”l‘l)

=-—1

N+1
1 (2N + 1)I! 2N(N +1) 1/2 i MEN+)my (N+1)m
SN2 2 (N +2)(N +3) =—(N+1)

+(poles with [ # N + 1))

1
+ <terms that die out faster than 1"N+2>’

(5.143)
1
goj; = 7“7

N 12 1
1 20— /2(1-1) Im~rB,lm
+ZTH—1<_ 2 < 142 ZJ Y;
=2 m=—1
—i—(l pole with parity m = (—1)1) + Sl_1>

1/2 N+1
1 B 2N+ 1! [ 2N / J(N+1)my-B(N+1)m
rN+2 2 N+3 J

(—2¢jpgJpng + (1 pole with parity 7 = —1))

m=—(N+1)

+(N + 1 pole with parity 7 = (—1)N+1> + (poles with [ # N + 1))

. 1
+ <terms that die out faster than rN+2>’
(5.14b)
-—5»+ZLS+L( lar dependence)
9jk = 0jk mEs el any angular dependence
1=0 (5.14c)
+ (terms that die out faster than r_(N+2)>.

The new multipole moments are M'™ and J"™ and can again be read off from the metric.
The different multipole moments are related to each other by

1/2 -
. ((z+1)(z+2)> MATT

SN\ 201 1)

and
Jm_ 32nl (I+1)(+2) mJAW

I+ 1)1+ DN\ 2(1— 1) A

The inverse relations are given by
neo20-01 \"* <&
=—|+— MY 5.15
M= 3 (500) 2 MUV (5:15)
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and

LD 2018 NP & im
Ja=""y ((z+1)(Z+2)> m;lﬂ Vi (5.15b)

In conclusion, we have found two versions of multipole moments by using different versions
of the spherical harmonics. The ones in (5.13) are most useful when working with Cartesian
coordinates. If we rewrite the components into spherical coordinates, (5.14) is more useful.
It does not matter which ones we take, they are equivalent by the relations above.

5.3 Kerr spacetime

To illustrate the formalism, we want to calculate the multipole moments for the Kerr space-
time. The difficulty in Thorne’s formalism when calculating multipole moments is to find
suitable coordinates. With the right coordinates, the multipole moments can be found by
just reading off the metric components. To do the procedure for the Kerr spacetime, we
follow [107, Section XI.D].

We start with the metric in Boyer—Lindquist coordinates, see equation (4.26). We normalise
the coordinate vectors with respect to the ordinary flat metric in spherical coordinates, and
expanding the corresponding metric components in powers of % gives

2m  2ma?cos? 6 1
om0 (1)

r r3 o
_ 2masin® 2ma?® cos? 6 sin 0 0 1
Gto = T2 + r4 + 76 )7
2m  4m? —a%sin?0  8m? — 2ma?(2 — cos?0) 1
Grr =1+ — + 5 + 3 +0(=),
r r r r
a?cos? 6
goo =1+ 2
2 2 52
a 2ma~ sin” 6 1
g¢¢:1+7“2+’l"3+0(7“5>.

Now, g4 contains no 7%2—te1r1rn, so the coordinates are mass-centered. However, the T%—terms in
grr and ggg contain second-order spherical harmonics, so we only have ACMC-0 coordinates.
From this, we can already read off that M =m, J =0, M, = 0 and Jy = —masinf and
J, = 0, but it is less clear what to do with J,.. It is determined by the fact that the multipole
moments are symmetric and trace-free tensors.

When switching to Cartesian coordinates, it is more easily read off that J, = ma and J, =
Jy = 0. Alternatively, we can use the form of equation (5.14), which give exactly the same
results.

Only the monopole and dipole mass and current moments may not give enough information
about radiation. We want to calculate the next multipole moments, for which we introduce

new coordinates which are of class ACMC-N with N > 1. Define r’ and 6’ by r = v/ + %

2 / o3 / . N . . . . .
and 6 = 0’ — %. Transforming the metric into these coordinates, normalising it again
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. . 1 .-
and expanding in powers of ;7 gives

2m  3ma?cos? 6’ 1
a1

7“/ 7“/3 T’5
2m  ma®(1 + 2P?) 1
=1+t -—5 105 )
2masin®  5ma® cos? @' sin 6 1
Jto = — 2 A +0 76
2masin®  ma3(9y P + %8@P3) 1
== P2 - 4 +0 TTG ’
2m  4m? —a?  8m3 — 4ma? — ma?cos? @’ 1
gr""':l—i_?—i_ 2 3 +0 A )
2ma? cos 0’ sin 0’ 1
gy =~ ETIT o ),

2

a 1
e =1+ 5 +0( ).

a®  2ma?sin? ¢’ 1
gtptp:l‘f‘ﬁ"f'T—l-O ok

This new coordinate system is of type ACMC-2, allowing us to read off the quadrupole and
octopole moments. We easily see that M, 45405 = 0 and J,4, = 0 since the r%;—term is absent
in gy and the T%—term is absent in g;,. For the remaining terms, we use the form of equation

(5.14). The only nonvanishing quadrupole and octopole moments are M?° = —4 %ma2

and J3Y = % %ma‘g. Using equation (5.15), we can also express the multipole moments in

terms of symmetric trace-free tensors, where we see that

1 47 1
Maja, = ﬁ <4\ / 15ma2> yg?@ = gma2 (5a1a2 — 3521522),

1 2
Mpy = My, = gmaz, M., = —gmaz,

are the nonvanishing components of the quadrupole mass moment. Similarly,

SO

2
= ma® (83 Sagag + 02, 0a5a, + OuyOaray — H0a 65,64,

15 al a2 - as

so the nonvanishing terms are

jalazag =

2 4
Tzzz = Trzx = Toza = jyyz = jyzy = jzyy = Bma:i, Tozz = —Bma3.

So, we have found the mass and current multipole moments up to poles of order 23. For
higher order moments we need coordinates that are of type ACMC-N with N > 3. In [104],
Sopuerta and Yunes mention a coordinate system of class ACMC-6, and it is possible to
calculate the multipole moments up to poles of order 27. Ultimately, we would like to have
harmonic coordinates to read off the multipole moments of any order. There are several
harmonic coordinates for the Kerr spacetime [1, 59, 119]. With these coordinate systems, we
read off the multipole moments up to finite order using software like Wolfram Mathematica,
but it is still difficult to prove a general formula for any order.
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Chapter 6

Multipole moments in vacuum

In Chapter 4 and Chapter 5, we defined multipole moments in two very different, seemingly
unrelated, ways. The Geroch-Hansen formalism is more geometric and the Thorne formalism
is very coordinate-dependent. In this chapter, we investigate how the two versions of multipole
moments are related. This question was answered by Giirsel [46] in 1983, who proved that the
multipole moments are actually equivalent. The goal of Section 6.1 is to go through Giirsel’s
work and prove that

1 k
Mas..oi = g =1y Manean: (6.1)
and I
_ k
Jr-an = 2k(2k — 1)1 7o (62)

where the Thorne multipole moments on the left-hand side are defined by Definition 5.14 and
the Geroch—Hansen multipole moments on the right-hand side are defined by Definition 4.9.
In Section 6.2, we derive some properties of the multipole moments.

6.1 Equivalence of both formalisms

Before we can prove equations (6.1) and (6.2) in Theorem 6.4, we discuss the assumptions.
Since we are only interested in what happens at infinity, we can remove some bounded part
of the spacetime. We assume that S is diffeomorphic to R3 \ Br(0) for some R > 0 such
that M is coordinate-wise asymptotically flat according to Definition 5.12 with empty K.
If necessary, we increase R such that S plays the role of S\ K in Theorem 3.3. Then, the
Thorne and Geroch—Hansen multipole moments both exist. We also need some lemmas.

Lemma 6.1. Let (S, h) be a three-dimensional Riemannian manifold and let v = (z!, 2%, 23)

be a harmonic coordinate system globally on (S, h). Let o be a smooth positive function on S
and let h = a®h. Then a coordinate system T = (', %2,2%) is harmonic with respect to h if

and only if 2%(z*, 22, 23), a = 1,2, 3, are solution of

D;(aD'z") =0, (6.3)
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where D denotes the Levi-Civita connection on (S, h). Moreover, (6.3) is equivalent to
0 ox®
h" — - | =0.
Oz’ <a Oz’ )

Proof. We follow Giirsel [46, Lemma 1]. Because a metric is a tensor, in Z-coordinate h = a2h
reads

~ ~ 01" 027 ox® Oz’
]’La :hzTT: 2’%77
’ Tz o0~ " gza ozt

For the determinant, this relation gives

~\ —2
det h = a(det h) (det gx> ,

X
where gx . So
) =N 0 [ 5 0T\ ' _, 01 93
@(\/dethh )_(%b(a deth(detax> o I
0 0% 07 oz
— jEZ*
6xb<a\/dthh 9 8k<dt6> >

Using that the adjugate matrix of an invertible matrix is given by its determinant times its
inverse, we find

det == i el
oz ) GuF ~ 2%km gz g

where 5%% equals 1 if bed is an even permutation of klm, equals —1 if bed is an odd permutation

of klm and equals 0 otherwise. Therefore,

(\/d t h“b> gbed (a\/d Cp O Oa' Da )

( O:U)_l oxz® 15de oxt 9z™

ozt Okim 5% a~b 23 o7¢ OFd
7%\ 9z! oz™

bed N jk _

‘5’“’” o7 (O‘ det hf ay) 05 O

2.0
+ 52ldavdet hjkax 0w O™

Oz 0T0TC 0T
l 2,..m
+ 5,2;1 av/det hpk 9T 02 O

OxJ 0zc 0xbozd”

2,0 . . . . . -
Now, a.‘?bi{ is symmetric in b and ¢ while 5,2?‘1 in antisymmetric is b and c¢. Therefore, the
b oz m
contraction vanishes and we see the second term in the expression above vanishes. Similarly,
the third term also vanishes and we are left with

l m
Vdet hh“b) _ %5*’“ ‘9< Vet it 9 > O Ox

klm 570 oxJ ) oz dxd

19z 0z’ 0
= 56—252‘%8; G{d B (avdet hjk )

ox o 0T®
el v/ JjkZ
<de 8x> Dk (a det hh 9 > ,

a5
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where we used that the adjugate matrix is again the determinant times the inverse in the last
equality. On the other hand,

: . 01° 1 0 . Ox®
D;(aD'z*) = D; W )| = ——— | aV U ].
(a T ) (ah 9 > i or (a det hh 9 >

Therefore,
% (\/det Eﬁab) = LegﬁDi (aD'z?).
ox det g7

The coordinates are harmonic if their Laplacians vanish, and this is precisely the Laplacian
of Z¥ with respect to h up to a factor. Therefore, Z is a harmonic coordinate system if and
only if D; (aDifa) = 0. Using that = is a harmonic coordinate system, we can also write

- 1 0 0T 0 oz®
. 1Ay — R v = hY
D; (aD T ) . o <a\/ det hh 3mj> h e <a 9 ),

which finishes the proof. O

Lemma 6.2. Let (S, h) be a three-dimensional Riemannian manifold and let p € S. Suppose
we have a global harmonic coordinate system x = (x', 2% 23) on (S, h) such that h¥ is ana-
lytic in x and hi;j(p) = 0i;. Let a be a smooth positive functions which is analytic in x in a
neighborhood of p and with a(p) = 1. Let h= a?h, and let T = (', 72,2%) be harmonic coor-

dinates on (S, h) such that T = 2° + O(r(z)?) near p, where r(z) = \/(:L‘l)2 + (22)* + (23)°.

Then % is an analytic function in x and h and o are analytic in T in a neighborhood of p.

0 oz
v e
h ot <a oxJ > 0-

Since a(p) = 1 > 0 and h is a positive-definite metric, this partial differential equation
is elliptic in a neighborhood of p. Since the coefficients of the elliptic partial differential
equation are analytic, its solutions must also be analytic [80, Theorem 6.6.1]. Therefore, the
coordinates 7 are analytic in x. Performing the coordinate transformation shows that o and
h? are analytic functions in Z. O

Proof. By Lemma 6.1, we have

It is not very unreasonable for such for the coordinates in Lemma 6.2 to exist. Suppose

we start with normal coordinates (,Il,l'Q,CL'?’), i.e., hij(p) = 4 and O;hji(p) = 0, then one

can show that there exist coordinates (yl,yQ,y?’) centered at p that satisfy % = 6% and
. T J

that solve Apy* = 0 [17, Appendix, Theorem 45]. In that case, we also have h;;(p) in the

y-coordinates. Moreover, the metric of an Einstein manifold, i.e., a manifold whose Ricci

tensor is proportional (by a constant) to the metric, has analytic components in harmonic
coordinates [17, Theorem 5.26].

After these lemmas, we move on to proving the equivalence of the multipole moments. We
introduce harmonic coordinates (2%, 2!, 2, 2%) on M such that % is a stationary vector field.
The following lemma shows that these coordinates on M induce harmonic coordinates on the

observer space S with metric A given by (2.2).
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Lemma 6.3. Let (M, g) be a stationary spacetime, and let (20,21, 22, 23) be global harmonic

coordinates on (M, g) such that % is a timelike Killing vector field. Then (z', 2% 23) can be

seen as global harmonic coordinates on the observer space (S, h).

Proof. In the given coordinates, the flow of % is given by 0(t, (20,21, 22, 23)) = (2% +
t,z', 22, 23). In particular, z', 22, 23 are constant along the integral curves of %. The fact
that the projection w: M — S is a surjective smooth submersion implies that we can see

x!, 2% 23 as smooth functions on S. We easily see that (z!, 22, 23) gives a diffeomorphism

between S and an open subset of R? because (22, 2!, 22, 2?) is a diffeomorphism between M
and an open subset of R? and 7 is an open map because it is the quotient map of a continuous
group action. With the (2!, 22, 23), 7 globally has the form of the local submersion theorem

[72, Theorem 4.12]. In these coordinates,

hij = —go0gi; + 9oigo;-

Then the inverse metric on S is

| ]
W=
—900
and the determinant of the metric is given by

det h = —(—goo)? det g.

Since the metric ¢ is independent of z° and we are working with harmonic coordinates, we
have

9 i) = 9 oB) _
2 () = (V) <o
Therefore,
o 3 o gid 9 3
—(Vdethh" ) = — | (— — det = —(+/—detgg”) =
8x1< ¢ ) ozt <( 9o0) ¢ g-yoo) 8$’< 99 ) 0
so (z1, 22, 23) is a harmonic coordinate system for (S, h). O

We are finally able to prove the main result.

Theorem 6.4. Let (M,g) be a stationary spacetime that is asymptotically flat according
to both Definition 3.2 and Definition 5.12. Shrink M and the corresponding observer space
S as explained in the first paragraph above this section. Moreover, assume that the mass
monopole moment in the Geroch—Hansen formalism does not vanish. Then the mass and
angular momentum multipole moments from the Thorne and Geroch—Hansen formalism are
related by (6.1) and (6.2), respectively.

Proof. Following Giirsel [46, Section 2.B], we carry out the proof in three steps. First, we
express the gravitational potentials in terms of spherical harmonics. The next step is to
choose a suitable conformal factor and the last step is to analyse the resulting tensors on S.

Step 1: expressing the gravitational potentials in terms of spherical harmonics.
Let (xo, xt, 22, a:3) be global harmonic coordinates for (M, g) such that % is a timelike Killing
vector field and it respects the asymptotically flat form of Definition 5.12. In Theorem 5.13,
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we saw that the metric is of the form (5.12) and we want to use this form to express the metric
h on S and the mass and angular momentum potentials in terms of spherical harmonics. For

the metric h, we have h;; = —googi; + goigoj- A careful but straightforward analysis shows
that

hij = 8ij + Z 1511, (6.4)
and

1
ij _ sij
R = 5 4 l; TS
where S; is an angular function that only contains spherical harmonics of order at most .
Since the coordinate vector field 8%0 is assumed to be a timelike Killing vector field, we have

A = —goo and equation (5.12a) gives

oM 2M?2 N1 2020 - 1)1
/\=—goo=1—r+742—zrz+1< n MaNa + 51 ). (6.5)

=2

In these coordinates, the twist one-form w = wydzx® of £ = % reduces to
wo = 0,
and
wi = €iapyE*VPE = iy (97 V) = €i0p79" T a0

1 Ba 78 <6960 99as 39a0> 1 Ba 75(89040 B 5960)

:_5502679 g —5501'579 g 920 Oz

o™ oxV Oxd

where in the last step we used that the metric g is independent of 2°. Because ¢ is totally
antisymmetric, it suffices to sum g8 and « only over the spatial indices and we can also combine
the two terms between brackets giving

9ga0
Ww; 501jkgjagk6 a;g

Since the metric is independent of z°, we have

jokm 99a0 itk 9901 9goo it km (9900 9900 gou
dxm  dx™ goo )

i0 Kk
wi = oijrg’ 9" 5 T = €oijkg” g am+6mg]gmﬁ €0ijkd’ g

Using (5.12), a careful analysis shows that

/420 — 1) o (1 1
Wi = Z<_ I+ 1) Ez]kff]malijl 192 .k <7«Z+1NA1> + TH_lsl1>

(
( (6.6)
B = <_ ZEZQZJF 1)) jAl@?ﬂ(rllﬂNAJ z+25z)

where we recall that S;_; changes in the equality, it is a symbol representing certain type
of terms: spherical harmonics of order at most [ — 1. Here, we also used that derivatives of
spherical harmonics are of the form [77, Appendix A]

0 [Ny, Nai | S
i\t )~ e e
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where ~ means that they are proportional. A careful analysis and this property then also
show that w = df with

1 4120 — 1
f Z l+1 < l—l— 1)) jAzNAz + Sl—l)- (67)
=1

Since we know A and f, we also know what the potentials ¢y and ¢ look like according to
Definition 4.1. Thus, by (6.5) and (6.6) we have that

1-X2—f2 M &1 [@-1!
M= T > ES] <( 1! : MaNa, + SH)’ 05
1=2 '
and
= ) l i 1) jAlNAl G (69)
=1

Step 2: finding a suitable conformal factor. Eventually, we want to get a conformal

factor of the form Q = % + 302, % because it would not change the highest order terms in

the potentials when moving from ¢4 to 5 4. First, consider the smooth positive function

1 /

Here, B is a constant such that 5ZEJQ BS|io = 27%]']2»0, for which we find
2 (7BS:0N\2 L (7BS(0\)>
B :< M(Z)) +<¢J (Z)>

By assumption, the mass monopole moment does not vanish, so ¢~5 ( ) # 0 and also B 75 0.
The superscript BS means that (2pg acts as a conformal factor, so hBS =2 Hgh and (b

BS¢A We write BS because Qpg is due to Beig and Simon [13]. They have proven that
we can always take Q2pg as a conformal factor and it satisfies a remarkable property with
harmonic coordinates on a neighborhood of ¥, the functions hBS Qpg and (;S are analytic
[13, Theorem 1]. Alternatively, we can also consider

¢2
Qg = WMQ = aflpg,

with M = 5@5 (io), which we assumed to be nonzero, and where

~ 2
25?2 52, (95

o= 3 = 5
M= 14 a2 442 -1 M

Hence, « is analytic in our chosen coordinates and «(i%) = 1. This turns Qg also into a
suitable conformal factor. Lemma 6.2 tells us that we can also take harmonic coordinates
around 7" for the metric induced by Qg, and the conformal metric, conformal factor and
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conformal potential fields are also analytic in these harmonic coordinates. For the power
expansion, a tedious calculation yields [46, Eq. (43)]

,,42 pl

1 =1
Qa = <1+Z IAlNAl+Sl 1)) (6.10)

where

7, e ”jAl +§ 2( 2k—1 1202 = k) = D! Tay Tapron
=2

! Il (I—k)! 2M 2M

Recall that in step 1 we take harmonic coordinates (xo b 2?x ) for M such that 5 00 g

a stationary vector field. By Lemma 6.3, ($1,CE2,$ ) give smooth coordinates on S. Let
(z',2%,2°) be global harmonic coordinates on (S, k) centered at i (note that we can shrink

0

S if necessary as long as S contains ¥ as an interior point). Then by Lemma 6.1 we have

0 oz°
1] _
W <anﬂ.> =0, (6.11)

on S. Conversely, Lemma 6.1 also tells us that coordinates (%l, z2, 553) centered at ¥ solving

(6.11) are necessarily harmonic with respect to h except at 1. So, they solve Azfi = 0 except
possibly at i°. But then it must hold at i° by continuity. Equation (6.11) admits a solution
of the form [46, Eq. (45)]

a et 1

o0

~ x 1

7o — 73(1+ZﬂAAlNAl> + s (BaAl—lNAl—l -I-Sl_l), (6.12)
=2

=2

where Ay, and By, are constants which can be written in terms of Thorne’s multipole mo-
ments. By adapting the conformal factor and the coordinates, we can simplify it further. We
consider the conformal factor ' = 3Qqg with

B=14> Ca3™- 3%, (6.13)

where C4, are arbitrary constants and we consider coordinates

oo
- <1 * ZDAZ%M ) + Zg‘lAz IE M- IAJZ (6'14)
=2

for some arbitrary constants Dy, and £4,. We want to choose the constants such that

[e.e]
a x® 1 Sl—l
YL (6.15)

=2

and

Q = (1+ZSZ 1). (6.16)

Equation (6.15) constitutes relations between Ay, Ba,, Da, and £,4, via (6.12) and (6.14)
and (6.16) constitutes relations between Ay,, Ba,, Ca,, L4, via (6.10), (6.12) and (6.13). We
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consider Ay,, Ba,, Z4, as given and it is possible to solve these equations for C4,, D4, and
Ea, 46].

Step 3: analysing the tensors at i’. Using (6.4), (6.15) and (6.16), the conformal metric
with conformal factor €' is

it oFl

r 2y Yv YL
ha’b’ =w hgdam/al ax/b/

(o9}

= 5a’b’ =+ Z r’lSl,l.
1=2

The gravitational field potentials become, using (6.8) and (6.16),

~ [ (21— 1) o o
(I)aM =M + Z<(Z')MA;xl P 1./ L+ T'/ZSl1>7
=2 ’

and, using (6.9) and (6.16),

~ > /20(20 — 1) o o !
QFZ( Ez+1)!) jA?”’Jl”'x/lw/Sl‘l)'
=1

Because the spherical harmonics in the 7’/ lSl_l-part of the metric are only of order at most
[ — 1, we see that the Christoffel symbols and the Ricci tensor terms vanish in the limit
when evaluating at i, which is found by setting ' = 0. Therefore, for the Geroch-Hansen
formalism determined by (4.17) we see that the only term of interest are the derivative terms.
Taking the relevant derivatives of the ' 9 ... 2% terms in the conformal potentials returns
indeed equations (6.1) and (6.2). O

6.2 Additional properties of multipole moments in the litera-
ture

We end this chapter by mentioning three results. One of the advantages of Theorem 6.4 is
that we can choose to work with either the Geroch-Hansen or the Thorne formalism (assuming
the conditions of both formalisms are satisfied).

The first result is about static spacetimes. If (M, g) is a static spacetime, the twist covector
field vanishes. Hence, the angular momentum potential also vanishes and we see the angular
momentum multipole moments all vanish. Equivalently, we can take coordinates such that the
metric satisfies go; = 0, from which we conclude the angular momentum multipole moments
all vanish by Thorne’s formalism. The following result tells us that the converse is also true.

Theorem 6.5. A stationary, asymptotically flat, vacuum spacetime is static if and only if
all angular momentum multipole moments vanish.

Proof. If the spacetime is static, the proof is already given in the paragraph above. The
converse is proven by Xanthopoulos [116] in 1979 in the Geroch-Hansen formalism. It would
be way more difficult to prove it in the Thorne formalism [46]. O

The second result is about axisymmetric spacetimes. As we saw in Section 4.3, the multipole
moments for axisymmetric spacetimes are also axisymmetric. The converse is also true.
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Theorem 6.6. A stationary, asymptotically flat, vacuum spacetime is axisymmetric if and
only if all multipole moments are axisymmetric.

Proof. If the spacetime is axisymmetric, it follows that the multipole moments are axisym-
metric as in Section 4.3. Similarly, if the metric components are independent of some angular
coordinate , we see that only the spherical harmonics with m = 0 can appear, so the mul-
tipole moments are also axisymmetric in the Thorne formalism. The converse follows by
carrying out the derivation of the Thorne formalism [46]. O

The last result is the most important one. Where the two results above characterise space-
time properties using multipole moments, this result characterises the spacetime itself. Two
vacuum solutions of the Einstein equations with the same multipole moments must look the
same near infinity. It means that the spacetime, except for a bounded region, is characterised
by its multipole moments.

Theorem 6.7. Two stationary, asymptotically flat, vacuum spacetimes with the same multi-
pole moments are isometric in a neighborhood of i°.

Proof. This is independently proven by Beig and Simon [12, 13] and [67], both in 1981, in
the Geroch-Hansen formalism. It can also be proven by carrying out the derivation of the
Thorne formalism [46]. O
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Part 111

Multipole Moments in Spacetimes
with Matter
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Chapter 7

Geometric multipole moments in
electrovacuum

In Part II, we studied multipole moments in vacuum solutions of Einstein’s equations. We
want to generalise these multipole moments to non-vacuum solutions. In this chapter, we
want to consider electrovacuum solutions. Electrovacuum solutions are spacetimes solving
the Einstein—-Maxwell equations without sources. In 1984, ten years after Hansen’s defini-
tion of multipole moments [48], Simon generalised the Geroch—-Hansen multipole moments to
electrovacuum [102]. The approach by Simon is discussed in Section 7.1. In Section 7.2, we
study how the multipole moments simplify in axisymmetric spacetimes like we have done for
vacuum in Section 4.3.

7.1 Multipole moments

Recall from Chapter 2 that a stationary spacetime (M, g) has a complete timelike Killing
vector field £ and comes naturally with the observer space (.S, k), which is a three-dimensional
Riemannian manifold. We assume it is asymptotically flat in the sense of Geroch, according
to Definition 3.2. Like we did in vacuum, we only care about the situation at infinity, so
we can restrict the observer space such that S is diffeomorphic to R? \Eg. Correspondingly,
the restricted spacetime is diffeomorphic to R x (R3 \§3). Therefore, we can assume that
HI:(S) = HIz(M) = 0 and H33(S) = H33(M) = R because S and M are homotopy
equivalent to S?, like we argued in the second paragraph of Chapter 4.

In electrovacuum, we do not only want that the spacetime is stationary but also that the
electromagnetic field to be stationary. This leads to the following definitions.

Definition 7.1. An electromagnetic field tensor without sources is a closed 2-form F' such
that «d x F' = 0. It is called ezact if F' is exact, in which case F' = dA for an electromagnetic
potential A.

Definition 7.2. The electromagnetic field F in a stationary spacetime (M, g) with a station-
ary vector field £ is stationary if L¢F = 0. An exact electromagnetic field F' = dA is called
stationary if LcA = 0.
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Note that we assumed that Hjg (M) = 0 and H3z (M) = R. In particular, there are closed
2-forms which are not exact, so an electromagnetic field tensor does not need to be exact.
Suppose F = dA = dA’ for A, A" € Q'(M). Then A— A’ is a closed one-form and H (M) = 0
implies that A — A’ is an exact one-form on M. So the potential for an exact electromagnetic
field can only differ by differentials of functions.

Since an electromagnetic field does not need to be exact, it is an extra assumption that
may be unwanted. In the research papers [38, 55, 77, 102], exactness is assumed, but we
take a slightly different approach. Eventually, we are only interested in the scalar potentials,
and they can also be defined as potentials for closed one-forms. Since H}y (M) = 0 for the
restricted spacetime as above, it makes more sense to assume exactness of closed one-forms
rather than exactness of closed two-forms.

Proposition 7.3. Let (M,g) be a stationary spacetime with Hiz (M) = 0 and let F be
a stationary electromagnetic field without sources on (M,g). Then there exist functions
v, pp € C®(M) such that

d(,DE:Z'&:F, dth:’ig*F. (71)
Proof. From Cartan’s magic formula we get
dieF' = LeF —igdF =0,

because [ is stationary and closed. Therefore, i¢F' is a closed one-form on M. Since
Hl: (M) = 0, the one-form i¢F is exact, so there exists a smooth scalar field oz € C*°(M)
such that i¢ ' = dpg. Similarly, we also have

dig * ' = Lex F —igdx F = *xLF = 0.

Here, we note that xd x F' = 0 implies that d * F' = 0 and L¢ commutes with * because
is a Killing vector field. So, there also exists a smooth scalar field pp € C*°(M) such that
ie x ' = dopp. O

We can see the scalar fields g and ¢ p satisfying (7.1) as electric and magnetic scalar poten-
tials, respectively. Moreover, observe that

,ngDE = ingpE = igiSF = 0,
and
ﬁgg@B = Z'gd(pB = igig x* = O,

so pp and ¢p are scalar fields that live on the observer space S by Proposition 2.6. They are
only defined up to a constant by (7.1), but we will see at the end of this section that there is
no gauge freedom under an extra assumption.

For an exact electromagnetic field, we usually decompose the four-potential into the electric
scalar potential and the magnetic vector potential. Suppose F' is an exact, stationary electro-
magnetic field that is also co-exact such that F = dA and «F = dA for some A, A € Q1(M)
with LA = Egg = 0. Then,
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implying that ¢ equals —A() up to a constant. Similarly,
A(A(€)) = digA = LA — iedA = —i¢ + F,

implying that ¢p equals —A(f) up to a constant. With coordinates such that & = %, — A

is interpreted as the electric scalar potential and — A, is interpreted as the magnetic scalar
potential. Therefore, we can interpret pr and @p in the same way.

The scalar fields ¢ and ¢p play very important roles because they contain a lot of infor-
mation about the electromagnetic field. To define multipole moments in the Geroch—Hansen
formalism, we need to find potentials (scalar fields) that contain a lot of information. The
next result shows that the electromagnetic field is completely determined by ¢ and ¢pg!

Proposition 7.4. Let (M,g) be a stationary spacetime with Hig (M) = 0 and let F be a
stationary electromagnetic field without sources on (M,g). Let pp,pp € C®(M) be scalar
fields satisfying (7.1), then

F = —\7'¢ Ndpg + X7+ (€ ndp). (7.2)
Proof. For the magnetic scalar potential, we have
dpp =i¢x F' = *({b /\F),
s0 & AN F = xdpp. Then,
CAF — & Ndpp = —AF — € NigF = ig(fb /\F) — ¢ xdipp = — * (gbAdch)
Rewriting this equation gives (7.2). O

In coordinates, (7.2) reads

Fu = _)\_l(fuauSOE —&0upE) + A_lguupofpgwaﬂPB- (7.3)

In the construction of the Geroch-Hansen multipole moments, the twist one-form defined by
(2.5) plays an important role. The exterior derivative of the twist one-form can be expressed in
terms of the Ricci tensor by Theorem 2.12. Therefore, we want to calculate the Ricci tensor
in terms of g and ¢p. The Einstein—-Maxwell equations imply that the scalar curvature
vanishes and for the Ricci tensor we have

1
Ry =2 (FM,FZ/’ - 4gWFpUF”“>. (7.4)
From (7.2) or (7.3), one can find

FHPFVp = )‘_25/151/ (’dSOE‘!Q; + ’d903|527) + 2)‘_2§(M€V)pOT£pacr(pEa’r@B
~ A (Ouppduor + 0up0,0B) + A g ldesl;,

and
FpoF*" = —2X"Ydop|? + 2X " |dps[2.
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Therefore, the Ricci tensor (7.4) is

Ry = 207266, (dpsl; + desl} ) + 4026277 €, 00 050r 01
— 227 Ouprdoor + Oupndien) + A g (ldonl? + desl?),
In the mathematical, global notation it reads
Re = 2)\_2<\d<pE|§ + ]dg03|3>£b Q& -2 ® *(gb Ndog N dgaB) — 2272« (5" Ndeg N d«p3> ® &
— 22 (dop @ dpr + dpp ® dop) + A7 (|desl} + |desl] ) g
Therefore,

Re(g,) = =27 (ldosl + 1dppl} )€ + 237! (+(& A doi A diop) ).
By Theorem 2.12, the exterior derivative of the twist one-form becomes
dow = —2% (gb A Rel€, -)) - 4x1¢5**(5b Adpg A dng) = 4xYig (gb Adpg A dch) — _4dpphdes.
Let w! € QY(M) be given by

w' = 2(ppdpr — prdep), (7.5)

then
dw! = 4dpp A dep.

So, w + w! is a closed one-form on M. It will replace the role of the twist one-form in
vacuum. Still, we have i¢w = 0 and L¢w = 0. Moreover, igw] = 0 and L',gw[ = 0 because
Lepp = Lepp = 0. Therefore, by Proposition 2.6, there is a covector field w’ on the observer
space S such that 7*w’ = w + w!. We see that w’ must also be closed because the pullback
by a surjective submersion is injective. Under the reasonable assumption that H éR(S ) =0,
this gives a smooth scalar field f on S such that w’ = df.

On S, we have the scalar fields A, f, ¢p and ¢p. In Section 4.1 we define the Ernst potential
&, but we need to adapt it for Einstein-Maxwell solutions. Define the complex scalar fields

YB = Qg +ipB,

and

E=A+if —¢h— ¢k
Then, define £, q € C*°(S) by
_1-¢£ 2B
“1re 1T iy

3 (7.6)

Decomposing the real and imaginary parts as & = ¢ + ¢y and ¢ = ¢p + idp gives'?

a2 '
E~ ¥B

2Excuse me for the bad notation with ¢p g and ¢5 5.
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_2f
¢y = (1+A_@%_@23)2+f2, (7.7b)
_ 205(1+ A ¢h — o) +205f

(142 =6 =) + 2
_ 20p(1+ A —¢p — 9B) —2¢pf
A= -@)

¢E ; (7.7¢)

(7.7d)

Definition 7.5. For a stationary solution of the Einstein-Maxwell equations, the four scalar
fields ¢pr, ¢, ¢, and ¢p given in equation (7.7) are the mass, angular momentum, electric,
and magnetic potential, respectively.

With these potentials, we are in business. The construction around multipole moments in
Section 4.2 and in Definition 4.9 specifically, does not depend on the mass and angular mo-
mentum potentials in vacuum. We can readily apply the same recurrence relation.

Definition 7.6. Let (S,h) be an asymptotically flat Riemannian manifold whose one-point
extension is (S , qb) and such that we have the mass, angular momentum, electric, and magnetic

potentials ¢pr, @5, ¢r, and ¢p, respectively. Suppose ggA = Q_%QSA extends to a smooth
function on S for A = M, J, E, B. Then the mass, angular momentum, electric, and magnetic
2k _pole moment are the 2F-pole moments of ¢y, ¢y, ¢, and ¢p, respectively, which are
defined in Definition 4.5.

For solutions of the Einstein-Maxwell equations, we certainly want to recover the multipole
moments in vacuum once the electromagnetic field is turned off. If FF = 0, we can take
vp = 0 and pp = 0, so that the electric and magnetic potentials vanish. Moreover, the
mass and angular momentum potentials are just the gravitational potentials in vacuum from
Definition 4.1. Hence, we find the same multipole moments.

Since we use exactly the same recurrence relation to define multipole moments, Proposi-
tion 4.10 and Corollary 4.11 are still valid. So, the electromagnetic multipole moments also
obey the same conformal transformation laws.

We end this section with briefly looking at the smoothness condition of the <;~S 4 in Defini-
tion 7.6. It would be interesting to find out whether there are results like Lemma 4.4 that
significantly weaken the smoothness condition by using elliptic regularity. However, we do
not delve into that issue here. We do want to observe some convergence properties. We must
have ¢4 — 0 when 2 — i® for A = M, J, E, B. Like in vacuum, which we discussed at the
end of Section 4.1, the expressions for ¢ and ¢y imply that A — % — 9% — 1 and f — 0.
Then the equations for ¢ and ¢p imply that o — 0 and pp — 0. But then we also have
A — 1 again, so we have exactly the same convergence properties as expected.

7.2 Axisymmetric spacetimes and the Kerr—Newman solution

Like in the Geroch—Hansen formalism in vacuum, it is difficult to calculate the multipole
moments. However, if the spacetime is also axisymmetric, we can simplify the calculation of
the multipole moments greatly as we saw in Section 4.3. In this section, we basically want to
redo everything in Section 4.3 but now in electrovacuum. The goal is to calculate the multipole
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moments for the Kerr-Newman spacetime. This section is split into three parts. First, we
discuss the assumptions we need and see how the multipole moments simplify. After that,
we discuss the generalised Fodor-Hoenselaers—Perjés and Backdahl-Herberthson algorithms.
Finally, we calculate the multipole moments of the Kerr—Newman solution.

Multipole moments in an axisymmetric electrovacuum

Recall from Definition 4.12 that a stationary spacetime is axisymmetric if it admits a spacelike
Killing vector field ¢ with closed flow lines and such that it commutes with the stationary
vector field. It is not sufficient to require only that the spacetime is axisymmetric. We also
want the electromagnetic field to be axisymmetric.

Definition 7.7. Let (M, g) be a stationary axisymmetric spacetimes with axisymmetric vec-
tor field ¢ and let F' be a stationary electromagnetic field without sources on (M, g). Then
F'is called azisymmetric if L, F = 0.

So, the electromagnetic field is not only time-invariant but also rotation-invariant. In that
case, it is shown by Carter [26] that F(&,1) = xF(£,v) = 0 under reasonable assumptions.
For example, it is sufficient to assume that the spacetime is connected (which we assume
anyway) and the vector field ¢ vanishes at some point (which usually happens on the rotation
axis in asymptotically flat spacetimes). If F(&,¢) = *F(§,v) = 0, then the Weyl-Lewis-
Papapetrou coordinates can also be used in electrovacuum [106, Chapter 19]. So, the metric
is of the form

g = —\(dt — wdp)® + \(p*dp? + ¥ (dp?® + d2?)), (7.8)

where A, w and 7 are functions that only depend on p and z. In these coordinates, F'(§,¢) =
*F(€,1) = 0 can be formulated as Fy, = 0 and (*F);, = 0. But with the metric of the form
given by (7.8), (xF');, = 0 implies that F,, = 0. Therefore, the only nonzero components of F'
are Fi,, Fy., F,, and F;, (and their antisymmetric counterparts). Moreover, these component
functions can only depend on p and z because L¢F' = Ly F' = 0. Since F(&,v¢) = *F(§,v¢) = 0,
we get for the electromagnetic scalar potentials ¢ and ¢p that

»Cq[;SOE = id,ngE = i¢i5F = F(f,lﬁ) =0,
and
ﬁw(pB = i¢dg03 = iwig * = *F(f,l/)) =0.

So, v and g are also not only invariant under time translations but also under rotations.
From (7.5) we also see that iyw! = 0. In vacuum, we concluded that iyw = 0 in (4.35) based
on the orthogonal form of the metric. But those conditions also hold in electrovacuum, so we
also have iyw = 0 here. Therefore,

wa = iwdf = 7;1/, (w + wl) =0.

Hence, also f is rotation-invariant. For A, we have exactly the same reasoning as in vacuum
to conclude it is rotation-invariant. Therefore, the potentials determined by (7.7) are also
rotation-invariant and we can use the reasoning in Section 4.3 in verbatim to conclude that all
multipole moments must be multiples of (dZ ® - - - ® dZ)°7" in the notation from Section 4.3.
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First algorithm to find multipole moments

In this part, we want to discuss the Fodor-Hoenselaers—Perjés algorithm to electrovacuum.
One year after it was found in vacuum, this generalised algorithm was published by Hoense-
laers and Perjés [54] in 1990. However, there were some mistakes. In 2004, some corrections
were made by Sotiriou and Apostolatos [105], but there was still one error left. Luckily, the
issue has been solved by Fodor, Costa Filho and Hartmann [38] in 2021. Since the derivation
is exactly the same as in vacuum but the expressions are even worse and the calculations are
even more tedious, we restrict ourselves to giving the results. The details can be found in the
three papers cited above.

Theorem 7.8. Suppose we have a stationary axisymmetric, alsymptotically f{at electrovacuum
solution of the Finstein equations and the potentials &€ = Q7 2& and ¢ = Q™ 2q determined by
(7.6) are analytic around i°, then the first m + 1 multipole moments can be computed using
the following algorithm:

1. Find the coefficients ag; and by; for j < m by aﬁzo = Z?io ap;Z’ and mﬁ:o =

2720 boj #;
2. Determine a;; and b; for i + j < m using the recursion relations given by [38, Section
IV.B]
(r+8)2ari2s = —(s +2)(s + Dayst2
r s r—ps—q o
+ (aklamn - bklbmn)apq

T s T—ps—q

+ (ariGmn — bkibmn) apt2,9—2(p +2)(p + 2 — 2k)
p=—2q=2 k=0 =0
r s r—ps—q

+Y > (ar@mn — bribmn) ap—2,4+2(q +2)(q +1 = 20),

+ (aklm — bklm) bpq
p=0 q=0 k=0 =0
x (p? + ¢ — 2p — 3q — 2k — 21 — 2pk — 2ql — 2)
T s Tr—ps—q L
* (arimn — bribmn) bp42.-2(p + 2)(p + 2 — 2k)
p=—2q=2 k=0 [=0
r s Tr—ps—q o
22 (@rG@mn — bribmn) bp—2,g+2(q +2) (¢ + 1 — 21),

where m =r —p—k and n = s — q — . Like in vacuum, we assume that a;; and b;;
vanish whenever i is odd;
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3. Calculate the components of the Ricci tensor ﬁij in terms of a;; and b;; using

@2§¢j = 2Re (ﬁza;zﬁjg— ﬁzaﬁjg—f— gz§]> s

where . B
O =72¢ —7%qq — 1,
and L B
5 = 7(€Did - aDi€),
with ™= \/p? + 22 = 21+ = because p = ;ﬂﬁ and Z = 7. The derivatives of vy
p2+z

can then still be determined using (4.42);

4. Compute S for n <m and a < m —n using (4.47) and (4.48), once with S = £ and
once with S = q. We only need to know S* up to degree pFz! with k +1 < m —n;

5. Ewvaluating (4.49) forn=0,1,...,m and using (4.37) to find the multipole moments.
Proof. See [54] with the necessary corrections in [38, 105] O

A (correct) explicit expression for the first seven multipole moments in terms of ag; and by;
can be found in [38, Section IV.C].

Second algorithm to find multipole moments and the Kerr—-Newman solution

In this part, we want to discuss the Backdahl-Herberthson algorithm for electrovacuum. The
derivation has been done by Fodor, Costa Filho and Hartmann [38], in 2021, in a different
way, but there is not really anything new. We can still use the recurrence relation for ys,
except that yg is different now. Theorem 4.17 does not even use that (S, h) comes from a
vacuum spacetime. Therefore, we can still apply this theorem and we want to apply it to
both ¢ and ¢ from (7.6).

The Kerr—Newman in Boyer—Lindquist coordinates is given by

9 N2 2a(2 e YA 2
g —(1-2mr = Q0 g 200mr = Q)6 0 22
p? p? A (7.9)
(r2 +a2)2 —a’Asin?0 9 9 '
= sin® 0dp~,

where p? = r? 4+ a?cos?0 and A = r2 — 2mr + a® + Q. The appearing constant are a mass
m > 0, a charge Q € R and the scaled angular momentum a € R. For the electromagnetic
field, we have F' = dA with

Qr aQrsin? 6

A=— i
r2 4+ a?cos? (r2 + a2 cos? §)?

de. (7.10)

From this potential, we can immediately read off the electric potential

Qr

= 0 7.11
r2 4+ a? cos? 0 ( )

pp = —A;

111



A tedious calculation, again using Mathematica, shows that

dop = ic+ F = — 2aQr cos 6 dr — aQ(r? — a® cos? §) sinﬁdg?
(r? + a? cos? 0) (r? 4+ a? cos? 0)
which is integrated by
a() cosf
o5 = 2 (7.12)

T 21 a%cos2d

Using (2.1) we have

N @
r2 4+ a2cos?d

For the twist one-form (2.5), a more tedious calculation using Mathematica shows that

2a(2mr — Q?) cos N 2a(mr? — Q*r — ma® cos? ) sin ¢
= r

(r2 + a2 cos? 0)* (2 + a2 cos? 0)?

Using ¢p and ¢p, we find (7.5)

2a4Q? cos 2a4Q*r sin 6
ol a@)* cos dr+ a@Q)*r sin db.
(r2 + a?cos? 6) (r2 + a?cos? 0)
Therefore,
4 0 2ma(r? — a? cos? 0) sin @
w+wl = mar cos 5 dr ( )2 do,
(r2 + a?cos? 0) (r2 + a?cos? 6)

which is precisely the twist one-form (4.27) for the Kerr metric and it is integrated by

2ma cos 0
r2 4+ a2cos?f’

=

Using Mathematica once again, we calculate the potentials (7.6) and we find

m(r —m + ia cos0) m
— = 7.13
§ (r—m)?+a2cos? r—m—iacosf’ (7.13)
. Q( acos ) Q
T — M + 1a cos
= = . .14
1 (r—m)?+a?cos? r—m —iacosf (7.14)

The metric h on the observer space, which is given by (2.2), becomes

r? —2mr + Q% + a® cos? 0
r2 —2mr + Q2 + a?
+ (r* = 2mr + Q* + a®) sin” Ody?.

h = dr? + (r* = 2mr + Q* + a® cos® 0) d6?

It is tedious to show that the Kerr—Newman spacetime is asymptotically flat, but we want to
do something similar as for the Kerr spacetime in Section 4.3. Introduce a radial coordinate

R:2<r—m—\/r2—2mr+a2+Q2>

m—a? — Q? ’
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which is inverted by
_ — 1 7
r=R 1<1 +mR + Z(m2 —a? —QQ)R2>.
Performing the coordinate transformation to h yields

(1 —1(m? —a® - Q2)§2)2 — ®R’sin?0 .

h = dR
Vi
2
1—1(m?—a2 - Q? R) — ?R’sin26
+ ( il 2) ) do*
R
(12— )R
+ 22 sin? 0dp?.

Like for the Kerr spacetime, we can also take the correspond conformal factor

RQ

o\ 2 — ’
\/(1 —X(m?—a? - QQ)RZ) — a?R’sin20

Q(E,H,go) =

In that case, we have
1
1 — a?R’sin2 0 ,
(1—%(m2—a2—Q2)§2)

h=0%h=dR> + R d6* + R’ sin? 0dy?.

To see that all conditions Definition 3.2 hold, it is best to switch to Cartesian coordinates.
However, we do not do so here. From the expression, we already recognise the flat Euclidean
metric and some higher order (in R) corrections in the gpp-term. Moreover, we easily see
that Q and d2 vanish at R = 0 but for the second derivatives the terms were we only
take derivatives of the numerator survive at R = 0 and give the Euclidean metric. This
should provide enough confidence that it works and if wanted, one can check it in Cartesian
coordinates.

Let 2 = Rcosf and p = Rsin6, then the metric is of the form (4.50) with
~ 1 a’p?
W(Z,ﬁ):210g<1— >

(1—§(m? —a? = Q1)@ + 2))°

This is of the wanted form and we can work through the Backdahl-Herberthson algorithm,
even though we did not derive it from the Kerr-Newman spacetime in Weyl-Lewis-Papapetrou
coordinates. The field potentials £ and ¢ become, using (7.13) and (7.14),

. _m((l_;(mtaﬂ—Q?)(fﬂ?)):’—a?ﬁ?)i
£(z,p) = 1+%(m2_a2_Q2)2<52+z2)—m5

and




The leading order part of v is

1
y(x) = §log( + a2x2)
We want to change the conformal factor with a suitable x as in (4.58). Taking C' = 0, (4.58)
yields
2
1 2 2 2,2 1 (1 —a%a?)

kp(z) = ilog(l—l—a T ) —log(l—a x ) = —ilog e |
We have to change the conformal factor {2 correspondingly. The new conformal factor becomes
Q = e*Q. For the leading order parts of £ and ¢ with the old conformal factor, one easily
calculates ) )
m(lJraZCBQ)Z - Q(l+a2332)Z

gL(ﬂf) = ) qr(z) =

If we change the conformal factor, we get

mv1 — a?z?

1 —azx 1 —azx

1 — 212
e 2 (o) = VLT

e RL2Ep (x) =

1—idax ' 1 —iax
For the coordinate u, we have
x
u=get@-—rl@) — =
1 — a2z?
It is easy to verify that
rp 2T m kg2~ Q

e "2 () = ——=— e LR (x) =

V1= 2iau’ V1= 2iau’

under this coordinate transformation. It is possible to expand this in a power expansion [7]
oo
k-1
y(u) =m0 = ),
k=0

for e~/ 25, and the multipole moments are found to be
cr, = m(ia)k.
Similarly, e *%/2§ gives
cr = Qia)".

Therefore, the nonvanishing mass, angular momentum, electric and magnetic multipole mo-
ments are

Mok = (_1)kma2k7 oks1 = (— 1)kma2k+1 o = (_1)kQa2k7 Qi1 = (_1)kQa2k+1’
(7.15)
respectively, in terms of scalars. They can be expressed in terms of tensors using (4.37).

Theorem 7.9. The nonvanishing mass, angular momentum, electric and magnetic multipole
moments of the Kerr—Newman solution are given by (7.15), respectively, in terms of scalars.
The corresponding tensors are found by (4.37).

Proof. The proof is given above. The multipole moments for the Kerr—-Newman spacetime
are also calculated in another way by Sotiriou and Apostolatos [105] in 2004. O
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Chapter 8

Coordinate approach to multipole
moments in electrovacuum

In vacuum, we defined multipole moments both in a geometric way using the Geroch—Hansen
formalism and in a coordinate-dependent way using the Thorne formalism. In the previous
chapter, we defined geometric multipole moments in electrovacuum, so we also want to know
whether they can be read off using some suitable coordinates. Before we will do a multipole
expansion for the gravitational and the electromagnetic field at the same time, we will first
review multipole moments in electrostatiscs and magnetostatics in Section 8.1. Consequently,
we look at multipole moments in linearised gravity in Section 8.2 and in the full nonlinear
theory in Section 8.3. In this chapter, we use the notation as introduced in the beginning of
Chapter 5. The discussion in this chapter is not supposed to be rigorous mathematics, but
rather an argument using physical intuition.

8.1 Multipole moments in electrostatics and magnetostatics

In this section, we work in flat space on which we have an electric and a magnetic field,
which are independent of time and there are no external sources. Then, Maxwell’s equations
without sources take the form

V x E =0, V x B =0, V-E =0, V-B=0.

Since the electric field is curl-free, there exists scalar potential ¢ such that £ = —V@. Then
the fact that E is also divergence-free implies that ¢ is a solution of the Laplace equation.
Combined with the fact that we want the electric field to decay to zero at infinity, this gives
that ¢ can be decomposed into spherical harmonics as

= Z Z 2z+1rl+1 @Y, ), (8.1)

=0 m=-1

for some constants ¢'™ [56]. We call the coefficients ¢'™ the electric multipole moments. Then
the electric field is of the form

!
E=-Vy= Z 3 ;L;Tfrl l+2<(z+1 YYRIm _/( z+1YElm) (8.2)

=0 m=-—1
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where we recall that Y& and Y™ are the pure-spin vector spherical harmonics of Defini-
tion 5.6.

We can also take another starting point. Since the electric field is divergence-free, we have
E =V x A for an electric vector potential A. We can decompose A into vector spherical
harmonics as
oo l
A= z Z (AR,lm(T)YR,lm+AE,lm(T)YE,lm+AB,lm(T)YB,lm)’
=0 m=-1

for some functions A®Im AEIm ABIm Using the following identities,

Vv x (f(r)YR’lm) = f(r)VY"™ x 0+ Y™V f xn = _\/mf(f)ys,@

Im\ 1 d(?“f(’f’)) lm __ ld(rf(r)) B,lm
Vx(f(r)YE )_ R nx vy — S Sy B,

am\ 1 oy'tm _ 1 gylm.
VX(f(T)YB )—va<f(r)%¢—f(r)sin9 95 9)

1 U+ f(r) g Ld(rf(r) V'™
l(l+1)< T T

1 d(rf(r) ay'tm
rsinf  dr Oy 7

= VIl + 1)@YR:lm L f) ypm
r r dr
we see that the electric field is given by

E=VxA
AR,lm 1 AE’lm
= Z Z l (1+1) 7(T)YBJW + ,uyﬂlm
r T dr (8.3)
=0 m=—1
AB,lm 1d AB’lm
11+ 1)7(7”)YR,lm _ (T(T))YEJWL)

r T dr

Applying the curl once more gives

AB lm(r) B,im 1 d2 (TABJm(T)) B,lm
=0 m=—1

Ale( ) ldAle( )

I(1+1 y Rolm I(1+1
+I(l+1) + (+)T o

1 d(TAEJm(?“)) Rim LA () g,
VI 1) Sy R S EE Iy R )

YE,lm

But the electric field is curl-free, so we must have AZ™ ()

l+1 and /I(l + 1)ARIm(r) =

d(ﬁjylm) [2]. Introduce constants Q'™ such that AZ!™(r) = , then we see that the vector
potential is
00 l
d(TAE’lm(’I”)) le
A= Z Z ( YR,lm + AE’lm(T>YE’lm + YB Im (84)
ES] ’
— — \VIl+1) dr
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and we interpret the constants Q'™ as multipole moments. Substituting (8.4) into (8.3), we
see that the electric field is

E= Z Z M( VI DY Fdm g gy i), (8.5)

=0 m=-1

So, the electric field does not feel A (r) and A®™(r) but it only feels the multipole
moments Q'™ via AP (r). Clearly, we want the two expressions (8.2) and (8.5) to coincide,

SO
le — _47rqlm H_il
2A+1V 1

From this relation it is clear that both scalar and vector potentials can be used to define
multipole moments and the resulting sets of multipole moments are equivalent. Note that
there is freedom left in the vector potential (8.4): the function AZ'™(r). This is as expected
because these terms can be written as a total gradient and therefore represent the gauge
freedom:

1 d(rAE’lm(r))
I(1+1) dr

YR,lm + AE,lm(,r_)YE,lm — V<TAE’lm(T‘)YZm).

Without sources, Maxwell’s equations are symmetric in £ and B. So, for the magnetic field
we have exactly the same decompositions. In particular, one may want to decompose the
four-potential A = —pdt + A;dx’, where ¢ is decomposed using (8.1) and (A1, Ag, A3) is
decomposed using (8.4). Then the electromagnetic field tensor F' is decomposed by decom-
posing the electric field using the scalar potential and the magnetic field using the vector
potential. Equivalently, we can also decompose the dual four-potential A with the magnetic
scalar potential and the electric vector potential. We summarise this discussion with the
following definition:

Definition 8.1. Let ¢p be the electric scalar potential and let pp be the magnetic scalar
potential without sources such that they decay to zero at infinity, then the electric multipole
moments ¢"™ and the magnetic multipole moments b"™ are of the form

e Z Z 21 ¥ lrl‘H ¢"Y" 0. 0).

=0 m=—
and
l l
SDB_Z Z 2l+1rl+1 YT, )
=0 m=-—1

Equivalently, they can also be read off as the parity 7 = (—1)!*! part of the electric vector
potential Ar and the magnetic vector potential Ap which are given by

- l R,Im R,lm E,lm Elm am [+1 qlm B,lm
Ap =3 30 (AFT YT AR )Y S [ Ty )
=0 m=—1

and

> R,lm m E,lm m 4w I[+1 blm m
Ap=>_ > (AB (Y™™ AT )Y = S [ e Y



Rlm, \ _ d(rAS'™) Rlm, \ _ d(rAD'™) ) .
where \/I(l + 1)Ap""(r) = —F— and /I(l +1)Az""(r) = ——£— for some functions
ABI and AR™,

Like we discussed in Section 5.1, there is a one-to-one correspondence between symmetric
trace-free tensors and spherical harmonics. We can express the multipole moments in terms
of symmetric trace-free tensors using (5.1) and (5.6). For the scalar potential, this gives

o= Z Z 2l+1rl+1 4 Na,, (8.6)

=0 m=—1

where Q is a symmetric trace-free tensor such that 94, = Zlm:_l qlmyfg. Here, y}gy is given
by (5.2). For the vector potential, the expression is a bit ugly as there is a lot of freedom in
ABIm (1), Nevertheless, it must be of the form

4m ) ] .
A= Z( Z r”l 5+ IQAlNAz + (l pole with parity 7 = (—1) )), (8.7)

m=—I

8.2 Linearised Einstein—Maxwell solutions

In Section 5.2, we decomposed the metric tensor in spherical harmonics for vacuum solutions
of the Einstein equations. In the previous section, we decomposed the electric and magnetic
field in spherical harmonics in flat space. Now, we want to combine the two approaches and
decompose the gravitational and electromagnetic fields simultaneously when they are coupled
via the Einstein—-Maxwell equations. To do so, we start with linearised gravity. Like in the
Thorne formalism, all indices are raised and lowered using the Minkowski metric rather than
the full metric tensor.

Suppose M is diffeomorphic to R x (R3 \@) and write

Guv = Nuv + g}w-
Let 7}“, be the trace-reverse of gllw, ie.,

1
Vi = Gy = 5" Gy

In the Lorenz gauge, which is especially useful for the linearised gravity [25, 53], we have
8,,71“ ” = 0. If the metric components are independent of the time-coordinate, this gives
3]7 = 0. The linearised Einstein equations in this gauge reduce to

Oy = —167TH.

Again, since there is no time-dependence, we can replace the flat wave operator [J by the flat
Laplacian A.

In Minkowski spacetime, we have Tyy = |E ]2 + \B\Q, where F is the electric field and B is the
magnetic field determined from F' through

E:—igF, B:—ig*F,

118



where £ = %. The Einstein-Maxwell equations imply that the electric and magnetic fields
must vanish at leading order, so F' also vanishes at leading order. Therefore, we want to
expand the electromagnetic field around zero, just as we want to expand the metric around
the Minkowski metric. Since the stress-energy tensor is quadratic in F', this implies that it
vanishes when only considering the first-order term [112, 117].

Hence, up to first order, v must solve the Laplace equations. Therefore, we can express

the components in terms of spherical harmonics as in Section 5.1. We want to have the same
factors as in vacuum, in which case we get [107, Equation (8.12)]

IM & 4 _
700 = S + (—1)ZEMA1 (7” 1)7141, (8.8a)
1=2
—2€ipa TN > 41
1 ipaJpTlq ! 1
L A ;(_” G omoac () a (8.8b)

Here, M4, and J4, are constants representing the multipole moments like in vacuum. Re-
versing the trace again and adding the Minkowski metric gives

IM & 12 -
goo=—1+==+4> (=D'5Ma,(r) ,,
1=2
~2¢jpa Ty N 4 -1
905 = T - lz—;(_l) mgqujpm_l (T’ )anz—1’
M & 2 -
Ggij = (513 (]. + T + (_1)lﬁMAl (T 1),Al> :
1=2 '

There is no mass dipole moment because we take coordinates that are mass-centered.

We also want to linearise the electromagnetic field. Then, F' is determined by dF = 0 and
dx F = 0. Suppose now that F is exact with an electromagnetic potential A that is also
stationary. Then we must have d * dA = 0. In the Lorenz gauge, we have d x A = 0, so we
see that Df A =0, where Df denotes the Hodge Laplacian. Linearising this equation gives
0A,, = 0 with respect to the flat wave operator. Since the components of the electromagnetic
potential do not depend on ¢, they satisfy the Laplace equation. Hence, we can decompose
the vector potential as in Section 8.1, defining electromagnetic multipole moments.

Alternatively, we saw in Proposition 7.3 that there exist electric and magnetic scalar potentials
o and @p, respectively, under reasonable assumptions. They are defined by i¢ /' = dy and
1e * ' = dip, where § = %. In our coordinates, we have £, = go,, so at zeroth order we
have & = —dt. Since we are only interesting in the first order corrections, we can observe
that dF = 0 implies that d xi¢ x ' = 0 and d * F' = 0 implies that d x i¢[’ = 0. Therefore,
wp and @p satisfy Df @ = 0 to first order, showing that ¢r and @p are solutions of the
Laplace equation to first order as they are independent of time. Hence, we can also apply to
method of Section 8.1 to determine equivalent electromagnetic multipole moments based on
the electric and magnetic scalar potentials.
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The easiest (and trivial) example in which we can apply this construction is the Reissner—
Nordstrom spacetime. The metric is given by

2 Y 2 Y -1
g=— <1 — mTﬂQ)dt2 + <1 — m7;2Q> dr? +r? (d02 + sin? 0d<p2),

and the electromagnetic potential is

A= —th.
r
We see that both g and A are spherically symmetric. From A, we get the electromagnetic
scalar potentials pr = 9 and pp = 0. Hence, we can immediately observe that the charge

o

of the system is ) and all other multipole moments vanish. Since the metric is static, i.e.,

goj = 0, we can also read off immediately that the angular momentum multipole moments
QQ

vanish. For the mass multipole moments, observe that % is already a second order term

because we also only consider linear perturbations of the electromagnetic field. Therefore,

2m
goo = —1+—,
r

to first order. Therefore, we find the mass monopole moment to be m. Note that we assigned
the same weight to m and ¢. They also have the same geometrised units so that is quite
reasonable. It would be way more interesting to consider the Kerr—-Newman spacetime, but
that is better done in the next section.

8.3 Multipole moments in curved electrovacuum

In the previous section, we discussed linear perturbations of the gravitational and electro-
magnetic fields. However, we are also interested in nonlinear perturbations. The goal of this
section is to discuss them.

Recall the metric density g'” = /— det gg"¥ from Section 5.2 and that the harmonic gauge
condition reads 8,(390‘6 = 0. Define

EHV _ nuzx o g,uz/.

Then we can also write the harmonic gauge condition as 855a’8 = 0. In harmonic coordinates,
the Einstein equations read

O™ = W% = —16m(— det g) (T°7 + £ + 157 ).
Here, t%ﬁ is the (harmonic) Landau—Lifshitz pseudotensor and it is given by

1
167 (— det g)t%ﬁ = igaﬁgpgaﬂgpuayg/w - gaygpoaugﬁpavglw

- gﬁugpaaugl/paygaa + gpag;waugﬁpaygaa

1
+3 (29“”9’8“ — g g‘”) (29p7Gor — Gpogrr)0ug” O g™
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Thorne and Kovécs provide a way to express the Landau-Lifshitz pseudotensor in terms of a
power expansion in hqg [108]. The other term is typical for the harmonic gauge and is given
by

167(— det g)tSf = —h" 9,8 + 0, 0,B”".

We expand the gravitational field Eag as

[eS)
haﬁ = Z Gp7§57
p=1

where G serves as a bookkeeping device in the expansion as we set Newton’s constant of
gravity to one. When gravity is turned off, that is when g,g = 743, also electromagnetism is
turned off. Therefore, we also write

o0
Fl.g = Z GPfh,.
p=1

Finally, we expand W,z as

[e.9]

p=2
which only starts at p = 2 because the stress-energy tensor is second order in F,g and t%i

and tolf are second order in Eag. Still, we assume all these functions are independent of ¢.
Then the harmonic gauge condition becomes

’ng,j =0 (8.9)
and the Einstein equations becomes
D'ygﬁ = wzﬁ. (8.10)

For the electromagnetic field, we also want dF' = 0 and *d * F' = 0. The first equation easily
translates to
55’7 + flg’)’va + 'Zyjaaﬂ = 0 (811)

The second equation is more subtle. It can equivalently be written as
gﬂfyvﬁF’ya =0, (8.12)

but not only powers of G are contained in F,g but also in g“% and the Christoffel symbols.
Using the relation between the metric tensor and h, it is possible to express the metric tensor
as a power series in terms of h [108]. If we expand the left-hand side of (8.12) in G, we see
the GP-term only contains ’ygﬁ and fgﬁ for ¢ < p. For p = 1, we do not need to take the
correction terms with ’ygﬂ into account and we simply have

n"9sfl, = 0. (8.13)

So, we want to find 'yiﬁ and foléﬁ solving (8.9), (8.10), (8.11) and (8.13) for p = 1 with wéﬁ =0.
This is exactly the same as in the linearised case. Equation (8.9) corresponds to the Lorenz
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gauge, equation (8.10) for p = 1 corresponds to the linearised Einstein equation and equations
(8.11) and (8.13) for p = 1 reduce just Maxwell’s equations.

For p > 1, we want to analyze w’ We can express the metric tensor, its determinant, the

Landau-Lifshitz pseudotensor and t H in terms of a power expansion in haﬂ. Hence, wg P is a
sum of terms that consist of products of (derivatives of) v, and f/, with ¢ < p — 1 because
we have the product of at least two functions. So if we know ~? 5 and f? 5 forg <p-—1, we
know the right-hand side of equation (8.10). The GP-term in equation (8.12) consists of a
term of the form 77578/3 fa like for p = 1 and all the other terms only contain 'yg 5 and fg 5 for
q < p— 1. These lower order terms in a sense act like a source term in Maxwell’s equations.
In any case, we can also see this as an equation for f(’;ﬂ where all other terms are given. So,
the field equations of order p are generated by ~¢ P and fgﬁ for ¢ < p — 1 and determine fygﬁ
and fg 5 These functions can thus be determined by solving the field equations recursively.

Up to now, everything works as long as we assume everything converges properly. The next
step is to introduce some characteristic length scales. In Section 8.2, we introduced the
mass M up to linear order. Similarly, we also have the charge Q up to linear order. Let
M = max{M, Q} be the mass scale. Note that it means that we assign the same weight to
mass and charge. The length scale R measures the nonspherical deformations of the source’s
gravitational and electromagnetic fields and is defined as

R = max{ | M /M, | Ta, /MY 1@, /M | By /M1

Hence, the gravitational and electromagnetic 2-pole moments are bounded by M R!. If the
source is of size L, it is reasonable to expect that R < L and we are interested in the region
far away from the source, meaning r > M,Q and » > L > R. We expand EW, Eo, W,
and g, in a series where each term scales as powers of M and R and some order of spherical
harmonics. We write

T l l _ l _ l
b =) At Fa=) ML W= il gw=) g,

pyn,l pn,l pyn,l pyn,l

where 'yﬁﬁl scales as MPR™ and only contains spherical harmonics of order [, and similarly
for the other decompositions. Sometimes, we want to sum over p, n or [. In that case, we
replace the corresponding index/indices by dot(s). For example, v, = >, ’yﬁﬁl. Since the
monopole moments scale as M and 7;,/ and fﬁl, in the nonlinear expansion equal the linear
perturbations, we see that ’y}w and fﬁ,j scale as M. Inductively, we see that 7%, and ff, scale
as MP using equations (8.10) and (8.12), respectively. Therefore,

p _— AP y— p
f)/p,z/_f)/p,zn f -

The same holds when decomposing the metric tensor and W as we see by expressing them in
terms of vji, and f,. From (8.8) it is clear that the only nonzero parts of v}, are v50°, gl

for I > 2, and'y”forl>1

So, we do not only want to decompose equations (8.9), (8.10), (8.11), and (8.12) in orders
of M, but also in orders of R and in the order of spherical harmonics. The harmonic gauge

condition becomes simply

pnl __
Tajj = 0.
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For the Einstein equation, we have

At = !, (8.14)

The object WH satisfies the conservation relation [91, Equation (6.54)]
0,WH = 0.

Since the components are independent of time, this translates to the condition

=0,

Wag,j

For Maxwell’s equations, we find

! ! !
T+ opt Touw =0,

and the other equation is more subtle, but still gives a differential equation for Zﬁl when we
know all mass orders ¢ < p — 1. Knowing the linear terms, i.e., the terms with p = 1, the
higher order terms can still be calculated recursively. The components 7,, are determined
by their Laplacian and divergence. We assume that we found a particular solution, but we
may need to add a homomogeneous solution. Homogeneous solutions of the Laplace equation
behave like r or r~'+1) with I’ > 0. Solutions of the latter type could have been included in
the linear part, but solutions of the former type may appear. Since we want the homogeneous
part of ’yﬁﬁl to be dimensionless, we want —p —n = I'. But —p —n < 0 < I’, which is a
contradiction, so we do not allow homogeneous pieces. If we would have allowed for time
dependence, there can be homogeneous pieces [107]. The electromagnetic field is determined
by their divergence and exterior derivative. If we assume the electromagnetic field is exact,
then equation (8.11) is automatically satisfied and we can replace equation (8.12) by a Poisson
equation. In that case, we can apply a similar reasoning as for yﬁ,t”’ to conclude there are
no homogeneous pieces. If we do not assume exactness, it is a bit more difficult. However,
like in Section 7.1, we do have scalar electric and magnetic potentials. In that case, we have
multipole the multipole expansion (8.1) for both ¢g and ¢p and we find an expansion for
the electromagnetic field tensor using (7.3).

With arbitrary time dependence, logarithmic terms can appear in the perturbations [107].
However, if the spacetime is stationary, that is not possible. Using induction, the form of wﬁgl
in terms of the other quantities, and equation (8.14), one can show that again no logarithmic
terms will appear in the same way as in Thorne [107, Sections IX and X]. Moreover, there
cannot by “tail terms” as discussed in Thorne [107, Appendix]. Therefore, the perturbations

gﬁgl must be sums of terms of the form

43

p
gt = | [[Mb™ | v,
Jj=1

The laws of angular momentum coupling require that Z§:1 l; =n>12>0,min ‘Z?Zl ilj’ <
[. Moreover, m = mq -+ - mp, (-)”r means taking the spherical harmonic of order [ and parity T,

and
Ml — {MAZJ" mj = (=1)",

e T (‘Dlﬁl-
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In mass-centered coordinates, this gives precisely the metric as in (5.12). Therefore, we can
still define the gravitational multipole moments in the same way, even with the presence of
an electromagnetic field.

We also want electromagnetic multipole moments. It is again easier to work with the poten-
tials than with the field tensor because the differential equations are easier to handle with.
Write ¢ = Zp ni ©P™ for the potentials as above. Then Maxwell’s equations imply that

l l
Agmt = o,

where vP™ consists of products of lower order terms. Therefore, we can solve for ¢P™ when
we know all orders ¢ < p — 1. Similar considerations as above show that

1
Y= Z Z 74l+1<2l+19 Az+Sl—1)- (8.15)

=0 m=

We can still define ACMC coordinates like in Definition 5.15. It seems almost certain to me
that Theorem 5.16 still holds, which would make the multipole moments well-defined. We
do not delve into this here. We also expect Theorem 6.4 still holds, meaning the multipole
moments introduced here are equivalent to the ones in Definition 7.6. Since the metric has
the same form as in the Thorne formalism, we can almost follow the proof of Theorem 6.4
in verbatim to conclude the result must hold for the gravitational multipole moments. If we
pick the conformal factor of the form

1 =S
Q:—+Zm, (8.16)

r
=2

as we did in the proof, then the hlghest order poles in the electromagnetic potentials also will
not change when dividing by Q3. Therefore, we expect Theorem 6.4 and we would have to
find the proportionality constant for the electromagnetic multipole moments.

We rather end this chapter with a quick look at the Kerr—-Newman metric. Recall that the
metric and electromagnetic potential are given by (7.9) and (7.10). Like for the Kerr metric
in Section 5.3, Boyer—Lindquist coordinates are ACMC-0 and we have, after normalising the
metric,

2
2m
g = —1+ — —|— Q +0(r ),
4masm9 _

Go = "3 + 0(7" %),

2m 4m —Q?%— a%sin?0
Grr =1+ — 2 2 + O(T_g)v

T T

a?cos? 6
gdoo = 1 + T7

a® 5
=1+ —=+0(r7).
9op + 2 +0(r™)
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Like for Kerr, we find that M = m, M, =0, J = 0 and J, = ma while J, = J, = 0.
Moreover, the electromagnetic scalar potentials are given by (7.11) and (7.12) and we find

op="2+067)
a@) cos b
$Bp = 7QT2 +0(r ™).

Let Q4, denote the electric multipole moments and B4, the magnetic multipole moments,
then these equations show that Q = £, Q, = 0, B =0 and B, = %% while B, = B, = 0.
This is precisely what we want when comparing to Theorem 7.9 up to proportionality. The

constants are a bit awkward, but we can rescale the multipole moments if we want.

We can also use harmonic coordinates. In 2014, Lin and Jiang [75] found harmonic coordinates
preserving the asymptotically flat form. Using Mathematica, I have been able to calculate
the first 11 multipole moments with these coordinates and they are indeed proportional to
the ones found in Theorem 7.9.
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Chapter 9

Multipole moments for other
matter fields

In this chapter, we want to generalise multipole moments to broader classes of spacetimes.
That is, we want to extend them to non-electrovacuum solutions of the Einstein equations.
We start with a discussion on arbitrary matter fields in Section 9.1. To illustrate another
class of solutions in which we can define multipole moments, we consider scalar field solutions
in Section 9.2.

9.1 Gravitational multipole moments with arbitrary matter
fields

The approach we consider to define gravitational multipole moments in presence of arbitrary
matter fields is due to Mayerson [77]. Like in Section 7.1, the main problem when carrying out
the Geroch-Hansen formalism is that the twist one-form is not necessarily closed. Therefore,
we want to define an improved twist one-form that is closed, and then we can carry out the
Geroch-Hansen formalism again.

Again, we assume our spacetime (M, g) is stationary with a stationary vector field £. Recall
from Theorem 2.12 that we have a twist one-form w whose exterior derivative is

dw = 2i¢ * Re(€,) = —2 % (gb A Re(é, -)). (9.1)
Let T be the stress-energy tensor, then the Einstein equations imply that
Rc— 1 R=T
c—ggR=T.
Define a one-form a on M as
a=T(& ")+ AT €€ (9:2)

By the Einstein equations, we have LT = 0 because £ is a Killing vector and we have «(§) = 0.
We want to calculate the divergence of a. By the conservation law for the stress-energy tensor,
we have V#T),,, = 0. Moreover, the total covariant derivative of §b is antisymmetric because
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¢ is a Killing vector, and the stress-energy tensor is symmetric. Since LT = 0 and L¢€ = 0,
we see that LT'(€,€) = VT'(€,€) = 0. Therefore,

VFay, = (VAT)E" + T VFEY + 20726, (VHENT (€, €)E,
+ AN VIT(E,€)8u + AT (€, € VHE,
=0.

Since the divergence of « vanishes, we have d x a = 0. Define the two-form n on M by
n =g * . (9.3)

Then we have, using Cartan’s magic formula and the fact that £, commutes with x because
¢ is a Killing vector field,

dn=dig xa = Lex o —iedxa =0,
so 7 is closed. Moreover,
ﬁg?’]zﬁgig*a:igﬁg*a:ig*ﬁgazo,

and
1em = dgie x a = 0.

Therefore, n is a two-form that lives on S, and it is also closed on S. However, we want 7
to be an exact one-form on S. That is a condition that is typically not true. However, it is
also not very unreasonable to expect 1 to be exact. As usual, we assume S is diffeomorphic
to R3 \@3, in which case the second de Rham cohomology is R. In other words, up to scalar
multiples and adding exact two-forms, there is only one closed two-form that is not exact.
We use the diffeomorphism between S and R? \E3 as a coordinate chart for S, and we use
spherical coordinates (7,0, ). Let S, denote the sphere in S of radius r for > 1 using this
chart. Then 7 is an exact two-form if and only if its integral over one, and hence all, of the S;.’s
vanishes. With a time coordinate along the stationary vector field, we see that n restricted to
S, must look like \/Tetg(Tgr - %T 00) df N dp because there cannot be a time-component.

If the metric would have been the Minkowski metric, we have v/— det g = r?sin 6 and go, = 0.

So, to first order, we have
s 2
/ 7~ / d@/ deTo, 72 sin 0. (9.4)
r 0 0

If the metric is of the form as in the Thorne formalism, we easily observe using the Einstein
equations that Ty, = O(r~3). If we assume this as well, we see the integral in (9.4) vanishes
in the limit » — oo. So, for large r, we expect fSr 71 to be close to zero. If it is zero for some
r, n is exact.

Suppose 7 is an exact 2-form on 5, then there is a one-form § on S such that n = dfS. Let
w! € QY(S) be given by w! = —23. Then we have

dw' = —2dB = —2n = —2i¢ * a.
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Using the Einstein equations, we have
= Re(€,) + X7 Re(€, )€ (9.5)

Now, ¢ * ¢" vanishes. Therefore, we see that dw! exactly cancels the failure for the twist
one-form w to be closed as in (9.1). So, w + w’ is closed and we want to replace w in the

Geroch-Hansen formalism by w + w’.

There seems to be a problem with the construction of w! above: there is gauge freedom in
the potential 3 for n. The one-form 3 is allowed to change by a closed one-form. On R? \§3,
a one-form is closed if and only if it is exact, so we can safely assume § can only differ by
an exact one-form. Mayerson [77, Section 3.3] provides a way to fix the gauge assuming the
metric has the same form (5.12) as in the Thorne formalism. In that case, the twist one-form
is still of the form of equation (6.6). The idea is to demand that to highest order, we do not
change the twist one-form. In other words, we demand that w{) =0 and

e}

Si_

I _ -1

wi =) (9.6)
=1

with the notation from the Thorne formalism. In that case, also the twist potential stays of
the form (6.7). Mayerson [77, Section 3.3.2] proves that it is possible for w! to satisfy (9.6)
by calculating the Ricci tensor in terms of spherical harmonics and subsequently expressing
the condition on § in terms of spherical harmonics.

Definition 9.1. Let (M, g) be a stationary spacetime with Killing vector field £ such that
n defined by (9.2) and (9.3) is exact. Suppose the metric can be written in the form Equa-
tion 5.12 using harmonic coordinates that preserve the asymptotically flat form. Then the
improvement for the twist one-form is a one-form w! defined by dw! = —27 and (9.6) and the
improved twist one-form is w + w!, where w is the twist one-form (2.5).

Given the improved twist one-form, it is actually easy to define the multipole moments. We
use exactly the same recursion relation as in the Geroch-Hansen formalism. Of course, we
need some smoothness assumptions, but that is not so much different from vacuum. If the
metric is given by (5.12) as in the Thorne formalism, also the proof of Theorem 6.4 carries
over to prove that the multipole moments coincide when working in the gauge (9.6) [108].
Note that it is not clear whether we can always write the metric in the form of (5.12) in
presence of matter.

We want to observe what w’! is in the situations we have already studied: vacuum and
electrovacuum. First, suppose the twist one-form is closed. That means §b A Re(€,-) =0,
but then we also have & A a = 0 by equation (9.5), from which we can conclude 7 = 0. But
then we can also take § = 0 which is clearly of the form (9.6). Therefore, the improved twist
one-form only differs from the original twist one-form if the latter fails to be closed. In other
words, w! only appears if the twist one-form is not closed. In particular, we have w! = 0 in
vacuum, precisely as wanted. In electrovacuum, we have

n = —2dy N\ dy.

With w! from (7.5), we have
dw! = 4dy A dp = —20.
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Therefore, we indeed improve the twist one-form in the same way as in Section 7.1, so the
method is consistent with our gravitational multipole moments in electrovacuum.

There is a problem with the multipole moments in presence of matter. The method above only
gives us gravitational multipole moments, and we cannot distinguish spacetimes using only
the gravitational multipole moments. For example, the Kerr and Kerr-Newman spacetimes
have the same gravitational multipole moments. Therefore, we also want to introduce so-
called matter multipole moments. In vacuum, those matter multipole moments should all
vanish and in electrovacuum we can simply use the electromagnetic multipole moments from
Section 7.1. It is not clear how to define the matter multipole moments in general. One could
hope to either expand the stress-energy tensor in spherical harmonics or one should extract
suitable potentials from the stress-energy tensor.

9.2 Scalar field solutions

We want to have a look at multipole moments in some other specific class of exact solutions of
the Einstein equations. In this section, we consider scalar field solutions. That is, we assume
there is a (real or complex) scalar field ¢ on M such that (M, g) is a solution of the Einstein
equations with stress-energy tensor

T = %(d$®d¢+d¢®d$) _ <;|d¢§ +V(d>)>g, (9.7)

where V' is a potential function. For a free scalar field of mass m, we must have V(¢) =
%m2|¢|2. Note that there is also a complex conjugate contained in the term |d¢>|§. For
complex-valued functions ¢, we have

|dg|2 = " 0,00, 0.

Equation (9.7) also comes with a field equation for the scalar field. We can see it as if it
is necessary for achieving the conservation law for the stress-energy tensor. If ¢ is complex-
valued, it is best to see V' as a function of the real and imaginary parts of ¢, or alternatively
as a function of ¢ and ¢. In that case, we find

%
Oy — 2——(¢) = 0. :
With V(¢) = 4m?|¢|?, this gives
Og¢ — m?¢ = 0,

which is precisely the Klein-Gordon equation with our sign convention. A scalar field solution
of the Einstein equations is a spacetime (M, g) together with a scalar field ¢ € C°(M)
solving (9.8) for some potential V' and such that (M, g) solves the Einstein equations with
stress-energy tensor (9.7).

In the remainder of this section, we study two types of scalar field solutions. The first one
are stationary scalar field solutions, where the scalar field must also be stationary. We drop
stationarity of the scalar field in the last part of this section.
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Stationary scalar field solutions

Definition 9.2. A scalar field solution (M, g) with scalar field ¢ is called stationary if (M, g)
is stationary with stationary vector field £ and L¢¢ = 0.

Since L¢¢ = 0, we also have L¢¢ = 0, which gives £¢T = 0. That is what we need because
the Lie derivatives of the Ricci tensor and the scalar curvature with respect to ¢ also vanish.
Using the Einstein equations, we can express the Ricci tensor as

Re=T — %gTr(T) = %(a@@ do + do ® do) — <;|d<z>|§ + V(¢>)>g - %(—Iddﬂz — 4V(¢))g

_ %(d& ©dp+do ® dp) + V()g.
(9.9)

Therefore,
Re(,") = 3 (i¢ (d6)do + ig(d0)dd) + V()€ = V()¢

because ig¢dp = L¢¢ = 0 and similarly for ¢. Therefore, € A Re(€,-) = 0. By Theorem 2.12,
this proves that the twist one-form defined by (2.5) is closed. Therefore, we do not need to
improve the twist one-form in the sense of Definition 9.1.

Since the twist one-form is closed, the twist potential f defined by df = w exists. As usual, we
assume that the first de Rham cohomology of the observer space S vanishes. Therefore, we
can still define the mass and angular momentum potentials in the Geroch—Hansen formalism
according to Definition 4.1. We assume that (M, g) is asymptotically flat in the sense of
Definition 3.2 and we denote the one-point completion of (S, h) by (§ E) and we have the
conformal factor {2 such that h = Q2h. Then, like in Definition 4.9, we assume that the
gravitational potentials gf) 4 =0 2(;5 4 extend to smooth functions on S for A = M, J.

With a stationary scalar field, it is also not difficult to think of matter multipole moments.
We simply use ¢ as a potential. Slnce ¢ is stationary, i.e., Le¢p = 0, ¢ lives indeed on the
observer space S. We assume that (2~ 2 ¢ extends to a smooth function on S. This is not very
unreasonable to expect. The asymptotic flatness condition ensures that the Ricci tensor, so
also the stress-energy tensor, must fall off towards infinity [77]. Therefore, we expect that
03 ¢ is a well-defined function near i®, where €2 is the conformal factor as in Definition 3 2.
Of course, this is a technical assumptlon and it should be checked each time. Assuming ™ 2 10)
is smooth, we can simply use the function ¢ as a matter potential and apply Definition 4.5.
If ¢ is a real scalar field, this gives one set of multipole moments describing the function. If
¢ is a complex scalar field, this gives two sets of multipole moments by taking the real and
imaginary part, or one complex set of multipole moments.

Definition 9.3. Let (M, g) be a stationary asymptotically flat scalar field solution of the
Einstein equations with (real or complex) stationary scalar field c;S € COO( ). Let Q be
the conformal factor in Definition 3.2 and assume that d)M = Q" 2d>M, qﬁ Jg=Q 2¢ J and
(;5 Q- 2d> extend to smooth functions on S where ¢ps and ¢ are defined in Definition 4.1.

We end this section by looking at two examples of scalar field solutions of the Einstein
equations. First, we consider the solutions discovered by Wyman [115]. They are a bit trivial,
but that may not be bad to start with. They are static, spherically symmetric solutions to
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the Einstein equations in presence of a free, massless scalar field. The solutions found by
Wyman are equivalent to the ones found by Janis, Newman and Winicour [58] as shown by
Virbhadra [110]. The metric in coordinates (t,r, 6, ¢) looks like

2 8l 2 - 2 1—y
g— _<1 - m) a + (1 _ m) ar’ + (1 _ m) r2(d6? + sin? 0d,%),
yr yr yr

for some positive constant m and some constant 0 < v < 1. The resulting spacetime is an
exact solution of the Einstein equations with scalar field

1—~2 2m
= 1 1-—1. 1
o= e (1-22) (9.10)

If v = 1, we are simply left with the Schwarzschild spacetime. Since the spacetime is static,
the twist one-form vanishes. Moreover, there is no improved twist one-form needed because
the scalar field is also independent of time. Looking at the Geroch-Hansen potentials, we
can immediately conclude that ¢; = 0. So we only have to calculate the mass and matter
multipole moments. We have .,
A= <1 - 27”) |
yr

Moreover, the metric on the observer space is

2
h:dr2+<1—m

)7“2 (dﬁ2 + sin? 9d<p2).
yr

Note that this is the same as what we would get for the Schwarzschild metric if we replace
277” by 2m. Inspired by our work for the Kerr spacetime in Section 4.3, we introduce a new

radial coordinate as
2(.. m _ 2m
B 27y <7" 5 7“(7“——7 ))

R= 5

m
The coordinate transformation can be inverted using

2
r:Rl(Hmmﬂng).
v Ay
Then, it is easy to check that
7= 0% = dR® + R°d6? + R sin® 0d?,
with .
R
m2 52’
1= 4

0=

We complete the observer space with i®, which corresponds to R = 0. Using Cartesian
coordinates, we easily verify the conditions on the derivatives of €2, concluding that the
Wyman solutions are asymptotically flat according to the definition by Geroch. For the mass
potential, we have

R ms 2
i’ _1—A2_1<1_2m>”_1<1_%>”_1 1-gR\ 7 1 (1-5R\"
M= 4 yr 4 yr 4 1+%R 4 1+%§ ‘




Then,

1 1 mp\ —27 mD5\ 2Y
7 _1 1——1 m—\ 2 m—\ 2 _ZR 1_ZR
=Q ¢y =-R (1-—R) (1+-—R G S %
o =g ( 2y ) < 2y ) <1+$R> <1+;§R

We can express ¢,s as a converging Taylor series around R = 0, and we see only even powers
arise. Therefore, we can also express it as a converging power series in Cartesian coordinates,
from which we achieve smoothness of ¢y around %, In the limit with R — 0, we have

QIM(ZO) =m,

so we recover m as the mass of the system. The higher order mass multipole moments
all vanish. In a Taylor expansion, $M only contains (even) powers of R and no angular
dependence. Therefore, all derivatives end up in the trace-part rather than the trace-free
part, and after taking the trace-free part, all higher order multipole moments vanish. So, the
gravitational multipole moments are the same as for the Schwarzschild spacetime.

We want to distinguish the Wyman solutions from the Schwalrzschild spacetime using the
matter multipole moments, so we should also calculate ¢ = 27 2¢. We have

1 -\ 2
- 1_~2__ m2_o)\ 2 1-
d=0"24= ’VRI<1—2R2> log | — 2| .
2 4~ 1+ 3R
Using a Taylor expansion, also here we see only even powers appear from which we can
conclude that ¢ is smooth around i°. Moreover, in the limit R — 0 we get

~ 2m |1 —~2

3 = -5

By exactly the same reasoning as for the mass multipole moments, no higher order matter
multipole moments will appear. So, the only nonvanishing matter multipole moment is the
monopole —27m 1}72. This is clearly nonzero when v # 1, so it allows us to distinguishe
the Wyman solution from the Schwarzschild spacetime. The behaviour of the multipole
moments is similar to the Reissner-Nordstrom spacetime. In that case there are also only
monopole moments and we can distinguish it from the Schwarzschild spacetime using the

matter monopole moment.

The Wyman solution are, like Schwarzschild, a bit trivial when considering multipole mo-
ments. We expect more interesting behaviour when considering rotating scalar field solutions.
For the rotating variant of the solutions above, the metric in Boyer-Lindquist coordinates is
given by [47, 62]

2mr 2mr 2mr\ 'Y, [ dr?
g:_<1_ 7’25) dt2—2asin20<1— <1— ;Z;) >dtd<p+ <1— 7’2!) p2<£+d92)

2mr\” 5 . 27717"1_72 2 2 .2 2
+{-|1——5 ) a"sin”0+ 1_W p° =+ 2a“sin” 6 | sin” Odp~,
VP

(9.11)
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with p? = r?2 + a%?cos?6 and A = r? 4+ a® — % If v = 1, this boils down to the Kerr
spacetime. This metric is a solution to the Einstein equations with the free, massless scalar

field
1—~2 2mr
1 1——— ).
? 2 * < vp? )

X
A—(1—2m;> :
VP

and the metric on the observer space is the same as for Kerr but with 2m replaced by 27’"
That is,

Like above, we have

2 2mr 2 2
re — = 4 a” cos” 0 )
h — Y T2+<T2—

mr 9 9 9 9  2mr 9\ . 9 9
—— 4+ a“cos“ 0 )|dO° + | r* — —— 4+ a“ | sin” Odp”.
rz—@—l—a? ~y ) < ~ ) )

So, we easily see that the observer space is asymptotically flat by replacing 2m by 27m every-
where. That is, we can take a new coordinate

_m _ 2 _ 2mr 2
R_Q(r % r S +a>

m? _ 9 ’
472 a

and Y
R

\/(1 - %(% - a2>§2)2 R sin?6

Calculating the twist one-form (2.5) is more tedious than for the Kerr spacetime. Using
Mathematica, we find

;
2acos0((1- 228 ) (1= (1-22) ) + 22461 0) 94 (r2 — 42 cos? 6) sin 6

1—v 1—v
2 2 _ 2mr _ 2mr 4 _ 2mr
(r ta gl )(1 wQ) p (1 702)

0=

w =

(9.12)
Unfortunately, I did not manage to find a primitive for this one-form. Therefore, I have not
been able to calculate the multipole moments.

Travelling waves

Above, we assumed that the scalar field is stationary. This is similar to the situation in
Chapter 7, where we assumed that the electromagnetic field is stationary. However, to define
multipole moments it may not be necessary to assume this.

Suppose we have coordinates (CL‘O =t 2t 22, x3) such that % is a stationary vector field. Let

¢ be a function of the form
otz 22, 23) = e hip(x! 22, 2P), (9.13)

for some complex function ¢ that is independent of ¢. Since (9.8) is a wave equation, it is
not unreasonable to expect such solutions. For example, they play a very important role
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in electrodynamics where they describe electromagnetic waves as solutions of the flat wave
equation [44, Chapter 9]. In these coordinates, it is easy to calculate

o2 = g% + 9" 0,0, + ig”c(Yojp — ;1)
and
%(d& ® dp + dp @ dp) = [ dt* + %z'c@ajw — 0;) (dt @ da? + da? ® dt)

1 ' (9.14)
+ B (8ﬂ8kx/z + 831/18/%@) da? @ da®.

If the potential V' only depends on |¢], it is easy to check using (9.7) that these relations
tell us that the components of the stress energy tensor are independent of ¢. In other words,
L o T = 0. Therefore, it is not needed to assume that the scalar field is stationary to achieve

oz
that the stress-energy tensor is stationary.

Using (9.9) and (9.14), we see that the the Rg,-components of the Ricci tensor are given by

Roo = ¥ + V([¥])goo,
1 _
Roj = iic(waﬂﬁ —10;0) + V(|¢]) goj-

Therefore,

o\’ o 1 B B '
<8mo> A Rc(é?ch’ ) = <2i0900 (VI — i) — 90j02!¢!2>dt A dad

1. _ .
+ 5icgo; (YO — YO da? A da”,
which is typically nonvanishing. Recall that the twist one-form is not closed in that case by
Theorem 2.12, so we do need to improve the twist one-form in this case. With « as in (9.5),
we have

1. — — ; ,
o= a;dz” = <ic(1/18jw — wajw) + c2|¢|2‘qo]>d:c]
2 900
In coordinates, applying the Hodge star operator gives

oT oj
(*a)uup = Eouvp9 Or = Eoquvpg ]aja

so (9.3) yields

Nuv = <ZL * a) = 500uugajaj = _EOi,ul/gl]aj'
920 uv
To find the improved twist one-form, we need to ingrate n and find § such that n = dS. This
cannot be done in general. It is impossible to continue the discussion. Even though this model
is already quite old with research at the end of the sixties [64, 95], I lack of good explicit
exact solutions. The ones I know are approximate solutions. If one has an exact solution,
it would be interesting to see whether we can find 8 and calculate multipole moments. We
also need matter multipole moments. One could think of remembering ¢ and trying to apply

Definition 4.5 to .
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Chapter 10

Conclusion and discussion

In this thesis, we have discussed multipole moments in stationary asymptotically flat space-
times. In Part I, we have seen when a spacetime is stationary and asymptotically flat. For
the former, we demand that a stationary vector field is complete, allowing us to work on
a three-dimensional Riemannian manifold by Theorem 2.3 rather than the four-dimensional
spacetime. However, the stationary vector field might not be complete. It would be inter-
esting to investigate whether the observer space S in Definition 2.2 is still ensured to be a
manifold or whether there exists a counterexample where this is not the case. That would
tell us whether we can maybe drop the completeness assumption.

For the geometric definitions of multipole moments, in vacuum or not, we use Geroch’s defi-
nition of asymptotic flatness: Definition 3.2. It demands that we add a point “at infinity” to
the observer space and the resulting space S must also be a three-dimensional Riemannian
manifold, whose metric is conformal to the one on the observer space. To ensure uniqueness
of the multipole moments, we also need that S together with its metric h is uniquely de-
termined by the observer space (S,h). The uniqueness result by Geroch [42, Appendix| was
incorrect, but we can replace it by Theorem 3.3. One can also define asymptotic flatness in
coordinates, but that yields an inequivalent definition as we discussed in Section 3.3. Unfor-
tunately, the regularity class from Definition 3.8 is not sufficient to define multipole moments
of order [ > 2 using the Geroch-Hansen formalism. Ultimately, we want to know whether
there are regularity classes that have a better resemblance with coordinate-based asymptotic
flatness conditions and allow us to define multipole moments. Smoothness in Definition 3.2 is
sometimes also a rather harsh assumption that may not be satisfied in cases where you want
it to be satisfied [28, 42].

From Chapter 4 onwards, we have assumed that H)g(S) = 0 every now and then, where
S is the observer space. Recall that this is a reasonable assumption. If (S, h) satisfies Def-
inition 3.2, we can take a coordinate ball B for (S , h) centered at i". Since we are only
interested in the local picture around 7°, we can restrict S to B \ {i°}. Correspondingly, we
can also restrict M to 71(B\ {i’}) and S to B. Then B\ {i"}, which is our new S, is
diffeomorphic to B3 \ {0}. But the punctured ball is homotopy equivalent to the 2-sphere, so
we find HJp(S) = Hiz(S?) = 0. If one does not assume this, we have to assume that almost
all closed one-forms we encountered are actually exact.
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In this thesis, we introduced four geometric versions of multipole moments. First of all, we
defined the Geroch—-Hansen multipole moments in vacuum in Definition 4.9. The main issue
that is left after assuming stationarity and asymptotic flatness is smoothness of the potentials
on S, which is partially solved by Lemma 4.4. In Definition 7.6, we generalised the Geroch—
Hansen multipole moments to electrovacuum and in Definition 9.3, we generalised them to
stationary scalar field solutions. Here, smoothness of the potentials is a bigger problem
because we do not have a result like Lemma 4.4. Since Maxwell’s equations constitute elliptic
partial differential equations for the electric and magnetic scalar potentials and (9.8) is an
elliptic partial differential equation for a stationary scalar field in a scalar field solutions,
one might expect a similar result holds in these settings. The fourth geometric definition
of multipole moments is discussed in Section 9.1 and is due to Mayerson [77]. It defines
multipole moments in rather general spacetimes. The explicit conditions are mentioned in
Definition 9.1, but it is difficult to digest what it means. It would be nice if this can be
improved, maybe by fixing the gauge for w! in an alternative way.

For the Thorne multipole moments, we have defined asymptotic flatness in Definition 5.12.
Basically, it says that if we have convergent series, then everything works. It would be good
to know whether we can make this assumption more precise. Where the geometric multipole
moments in vacuum, electrovacuum and scalar field solutions are treated in a mathematically
rigorous way, this is a bit less so for the Thorne multipole moments in vacuum in Chapter 5
and in electrovacuum in Chapter 8. This should be better understood. The same is true
when we assume both asymptotic flatness conditions are satisfied, which is what we do in
Theorem 6.4. The result of Theorem 6.4 is very remarkable and powerful, it tells us that
the Thorne and Geroch—Hansen multipole moments are equivalent. So, once we know one of
them, we also know the other.

In Chapter 8, we developed a new method to find multipole moments in electrovacuum, sim-
ilar to the Thorne formalism in vacuum. Even though we did not present a mathematically
rigorous derivation, our physically intuitive argument shows that the construction most cer-
tainly works. It is also almost certain that the multipole moments are equivalent to the ones
by Simon as we have discussed surrounding (8.16). It is left to go through the details.

In vacuum and electrovacuum, we have seen the multipole moments for the Kerr and Kerr—
Newman spacetime, respectively, in both the geometric and coordinate-dependent formalism.
In the geometric formalism, it is difficult to calculate multipole moments but we have seen it
simplifies greatly in axisymmetric spacetimes in Section 4.3 and Section 7.2. We have been
able to determine the multipole moments to arbitrary order. In the Thorne formalism, we
cannot determine the multipole moments to arbitrary order, but with help of some software
we can go to very high orders when working with the correct harmonic coordinates as in
[59, 75]. When the spacetime is not axisymmetric, it is typically much easier to calculate the
first few multipole moments using the Thorne formalisms than the Geroch—Hansen formalism.

In Section 9.2, we wanted to determine the multipole moments for the rotating JNW solution
(9.11) [47, 62]. We have been able to show asymptotic flatness because the observer space
is the same as for the Kerr spacetime but with a rescaled mass. Unfortunately, we have not
been able to find a primitive function for the twist one-form (9.12). Once we have found it,
we can find the multipole moments in the same way as for Kerr and Kerr-Newman using
Theorem 4.17.
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At the end of Section 9.2, we have briefly discussed scalar field solutions with time-dependent
scalar field given by (9.13). Even though such models have been studied for a long time
and are interesting in physics [64, 95], I am not aware exact, stationary, asymptotically flat
examples. If there are any, it would be interesting to see whether we can determine the
gravitational multipole moments using Mayerson’s definition. We need the improved twist
one-form because the original twist one-form is not closed. As far as I know, it could be
the first solution where multipole moments can be calculated while there are time-dependent
matter fields.

We end the conclusion and discussion with maybe the most important remark when we want
to interpret measured multipole moments. Theorem 6.7 tells us that far away from the source,
we can distinguish spacetimes based on their multipole moments. Assuming that we are in
vacuum, this allows us to reconstruct the spacetime when measuring the multipole moments.
However, the vacuum-assumption is key here. For example, the Kerr and Kerr—Newman
solutions have the same gravitational multipole moments. In electrovacuum, we are still
lucky because there is a similar result by Simon [102, Theorem 2]. However, there are also
wilder examples of Newtonian objects that have the same multipole moments as Kerr [20].
This is also the reason why Mayerson’s multipole moments are not as useful as the others:
they do not provide a complete description in a certain setting. An ultimate goal would be
to define “matter multipole moments” for any type of matter fields that can be measured.
Then we can distinguish spacetimes irrespective of the type of matter. To be honest, I do not
expect this is possible.
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Appendix A

Tensor fields on the observer space

Proposition 2.6. Let (M, g) be a stationary spacetime with stationary vector field & and with
observer space S. There is a C*°(S)-module isomorphism between the set of tensor fields T’
on S and the set of tensor fields T' on M such that LT = 0 and all possible contractions
between T and & vanish. Moreover, the correspondence commutes with tensor products and
contractions.

Proof. The idea of the proof is that the pullback gives the one-to-one correspondence for
covariant tensor fields. The assumption that the Lie derivative vanishes should be interpreted
as if the tensor field is invariant under the action. The assumption that the contractions
vanish should be interpreted as if the tensor field is horizontal to S. We prove the proposition
in the following steps:

0. Define basic tensor fields and a C°°(S)-module structure on the space of basic tensor
fields on M;

1. Construct the correspondence on covariant tensor fields;
2. Define a Riemannian metric on S turning 7 into a pseudo-Riemannian submersion;

3. Construct the correspondence for arbitrary (k,[)-tensor fields and observe it commutes
with tensor products;

4. Characterise the correspondence for vector fields;
5. Show the correspondence commutes with contractions.

Step 0: C°°(S)-module of basic tensor fields on M. Let 7*(S) denote the (k,1)-

tensor fields on S, and let 7;(58’1) (M) be the (k,l)-tensor fields 7" on M satisfying LT = 0
and such that all contractions of T will £ or € vanish. Then it is clear that 7" (S) is

a C*°(S)-module, but it may not be immediately clear for T(k’l)(M). Let f’ be a smooth

bas
function on S, then f = 7*f' = f’ o7 is a smooth function on M. Moreover, for p € M,

(Leh)p) = € 1) p) = &(n* ) = (f o7 069)) (0).

But 70 8®) is the constant map that maps everything to the integral curve represented by
0. Therefore, f’ oo 0P is constant and (Lef)(p) = 0. Since p € M is arbitrary, L¢f = 0.

138



Therefore, we can define scalar multiplication on 7]'D(:S’l)(M )by f/-T = fT = (x* f')T, which
is again a basic tensor field. This turns 7;J(§S’l)(M ) into a C°°(S)-module by the properties of
multiplying tensors with functions on M and the fact that #* is linear and multiplicative on
functions. To prove the result, we want to find isomorphisms ®®*-) T(k’l)(S) — 7;(:;1) (M).

Step 1: correspondence for covariant tensor fields. First, we consider covariant k-
tensor fields. Let A’ be a covariant k-tensor field on S, then we have a covariant k-tensor
field A =7*A’ on M. Again,

d d
O;m ANy = —| ((mob) A)y=—| (774), =0,

d
(LeA), = &
eHp dt |,_, dt|,_,

dt|,—_o

because m(6(t,p)) = m(p) for all p € M. This shows that LA = 0. Since dm,(&p) = 0, it is
also clear that contractions between A and & vanish. Hence, the pullback 7* defines map from
Tk (S) to ’E)(Ss’k) (M), and we know it is a C'*°(S)-module homomorphism that commutes
with tensor products by the properties of tensor pullbacks. Since 7 is a surjective smooth
submersion, we see that 7*: 70k (5) — E(Ss’k) (M) is injective.

We want to take ®(®%) = 7* but then the map must also be surjective. Let A € %(S;k)(M)
and take v € S, v},...,v), € T,,S and p € M such that 7(p) = ~. Since dnp: T,M — TS is
surjective, we can take v; € T,M such that dm,(v;) = v}, meaning v; is a lift of v/, for each 1.
Then we define a rough covariant k-tensor field A’ on S by

Al (v, 0p) = Ap(vr, .y vg).

We want to check that this is well-defined. That is, we want to show that the definition of A’ is
independent of the choices we made. Let w; € T, M be another lift of v/, then dmy,(v; —w;) = 0,
so v; — w; € ker(dm,). Therefore, there exists ¢; € R such that v; — w; = ¢;§,, for each i. But
then we have

Ap(vl, cee ,Uk) = Ap(w1 + Cl§p7 e, WE Ckgp) = Ap(wl, ce ,wk),

because all possible contractions between A and ¢ vanish. We also need to show A’ is in-
dependent of the choice of p. If we also have 7(q) = =, then ¢ = 6(¢,p) for some ¢ € R.
Moreover, we have d(0;),(vi) € T, M such that dmg(d(6:),(vi)) = d(706;),(vi) = dmp(v;) = v
Therefore, d(6;),(v;) is again a lift of v}, but now in T,M. Since L;A = 0, we know A is
invariant under the flow of £, which gives

Ag(d(0)p(01), .., d(O)p(vr)) = (O A)p(vr, .. vn) = Ap(vr,- .., v).

Therefore, A’ is independent of the choices. If v; is a lift of v}, then av; is a lift of av}, and
if w; is also a lift of w}, then v; + w; is a lift of v + w]. Combined with the fact that A, is
multilinear, this shows that AiY is multilinear and A’ is a rough covariant k-tensor field on
S. Hence, the construction of A’ is well-defined. We are left to prove that A’ is smooth. Let
U C S be a neighborhood of = such that we have a smooth section o: U — M of m: M — S.
Since A is a smooth covariant k-tensor field on M, this gives a smooth covariant k-tensor
field 0*A on U. Now, do,(v]) is a lift of v because o is a local section of 7 and therefore,

AL (v, .., 0p) = Ay (doy(v1), ... doy(vy,)) = (67 A)y (V] ..., 0).
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So, A’ equals 0* A locally, and the latter is smooth. Since smoothness is a local property and
the construction above can be done around any v € S, A’ is also smooth. Moreover, we easily
see from the construction that 7* A’ = A, so 7*: Tk (5) — E(Ss’k) (M) is surjective. Indeed,
we can take ®(®F) = 7* and it is a C'°°(S)-module isomorphism that commutes with tensor
products.

Step 2: metric on S. A particular covariant 2-tensor field on M is the metric g. Let
h=g+X '€,

then it is a covariant 2-tensor field on M such that L¢h = 0 because L¢£ = 0 and L¢g = 0
(note that h differs by a factor A compared to equation (2.2)). Moreover, h(§,:) =0 = h(-,£),
so the contractions of h with & vanish. By Step 1, there is a unique covariant 2-tensor field
R on S such that 7*h/ = h. We will see that A’ is a Riemannian metric on S. Since h is
symmetric, we observe that &' is also symmetric. Let v € S and o' € T',S, then we take p € M
such that 7(p) = v and we take v € T,M to be the unique lift of v" such that g,(p,v) = 0.
Then

W (v, v") = hy(v,v) = gp(v,v).
Since g,(&p, v) = 0, we know that v is spacelike, so g,(v,v) > 0 and g,(v,v) = 0 if and only if
v = 0. Therefore, h. (v, v) > 0 with an equality if and only if v = dm,(v) = 0, so A’ indeed
defines a Riemannian metric on S.

Step 3: construction for arbitrary tensor fields. A metric allows us to raise and lower
indices of tensor fields. Given a (k,l)-tensor field 7" on S, we can lower all indices using h’ and
we get a (0, k+1)-tensor field 7" on S. Then we apply 7* so that we get 7 (T’b) € T(O k+) (M)
Finally, we raise the lowered indices again using g and we get a (k,[)-tensor field <I’(k (T =
(Tr* (T’b))ﬁ on M. Lowering all indices using h' gives a C°°(S)-module isomorphism from
TED(S) to THED(S), and above we showed that 7*: TR0 (S) — ’T(O k) ( ) is a C™(95)-
module isomorphism. The only thing that is left to show is that raising with g gives a
C*°(S)-module isomorphism between basic tensor fields on M. If so, we can take®® ) to be
the composition of these three C*°(S)-module isomorphisms, so it is one itself.

Suppose A € ’7;0 k) (M ) and define T = A* by raising the first &k indices. Since ¢ is a Killing
vector field, the Lie derivative £ commutes with raising and lowering with g. Therefore, we
also have LT = 0. Moreover, contractions of T' with £ in one of the lower [ indices vanishes
because it does for A. Contractions of T with & in one of the upper k indices also vanishes
because it is the same as lowering the index of T back to as it was for A and contracting

with &. Hence, T' € 7;)(:81 (M). Moreover, raising gives a C°°(M)-module isomorphism, and

restricts to a C°°(.S)-module isomorphism between T(O k) ( ) and ’E)(:S’l)(M ).

This shows that ®*4 is a C*(S)-module isomorphism between 7%/ (S) and ’7{5:5’[)(M). It
is quite clear that the construction commutes with the tensor product. Suppose we have a
tensor field 77 ® S’ on S, then lowering all indices using '/ gives (T’ ® ')’ = T"” ® S”. The
pullback on covariant tensor fields also commutes with the tensor product, and finally we
raise all the indices again using g. Hence, we see that the isomorphism between tensor fields
on S and basic tensor fields on M commutes with the tensor product.

From the construction, it is clear that ®*!) commutes with raising and lowering indices
with A" on S and g on M, respectively. In particular, we see that the inverse metric of A’/
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corresponds to raising h with ¢, giving ¢~ + A" 16 ®£. In the construction of ®*1) | we raised
with respect to g. But this is the same as raising with ¢=' + A\™1¢ ® & because 7* (T’b) the
contraction of this covariant tensor field with ¢ in any index vanishes. Note that we can raise
indices by any contravariant 2-tensor field, whether it is nondegenerate or not.

Step 4: characterisation for vector fields. We want to understand a bit better how the
construction acts on contravariant tensor fields. Since we can write a contravariant tensor
field as the sum of tensor products of vector fields and the construction commutes with sums
and tensor products, it suffices to check what the map ®(19 looks like. Let X € E(;;O)(M ).
For p,q € M such that w(p) = 7m(q), there is a real number t such that ¢ = ¢ - p. From the
fact that £ X = 0, we know that X is invariant under the flow of {. But then

dmep(Xtp) = dmep(d(0r)p(Xp)) = d(m 0 04)p(Xp) = dmp(Xp).

Hence, there is a smooth vector field X’ on S such that dm, (X)) = X;(p) [72, Problem 8-18(c)].
We want to compare this to our construction, for which we use local coordinates. Let p € M
and take coordinates (¢,z', 2%, 2%) on an open subset U C M centered p and (y',%2,y%) on
an open subset V' C S centered 7(p) such that #(U) C V, £ = %, and 7(t,z!, 2% 23) =
(y',52,y%). Lowering the index of X' gives X" = h;jX’jdyi. Then the pullback yields

* (h;jX’j)da:i and raising the index gives gH7* (h;jX’]) a%. By the construction, we have
* (h%) = h;j and hg, = 0. Therefore,

9" (hi;) = 9" his = " oy = 8 + X710 goj.-

So,
1,0 _ i, _% I -1, %
o) = g’ (WX 7)o = 7 (X7) 55 + A 0" (X7) 50,
giving
(r@00(x)) = dr, (900(X),) = 2 (X)) 5| = X)) | = XLy,
m(p) p p Oyl () dyJ (o) w(p)

Hence, (CIJ(LO))71 = 7. This gives a definition of ®19) that does not directly depend on
the metric. The metric is still needed to define the basic vector fields and we need it for the
inverse of m, to pick the vector field that is basic.

Step 5: correspondence commutes with contractions. We want to show that the
construction commutes with contractions. To keep the notation simple, we only consider the
trace of a (1,1)-tensor field and the argument can easily be generalised to contractions for
(k + 1,1 + 1)-tensor fields. Since a (1, 1)-tensor field can be written as the sum of tensor
products of vector fields with covector fields, we even restrict ourselves to such tensor fields.
Let o' € TOD(S) = QY(9), X’ € THO(S) = %(S) and consider o’ ® X’ € T(L1(S). Then
w'(X') is the contraction of w’ ® X', and is a smooth function on S. Applying ®(0) to this
function yields

f=200W(X") = (' (X"),

which is a smooth function on M satisfying £(f) = 0. On the other hand, we can also bring
W' ® X’ to M and then take the trace. Let w = ®(1(w) and X = @19 (X’). Then w = 7*’
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and X' = m, X, so X;T(p) = dmp(X,). Therefore, we have

(b(l,l)(w/ ® X/) — @(0,1)(00/) ® @(1,0)(){/) = w ® X,
and the trace gives
w(X)(p) = ("w)p(Xp) = "J;r(p)(dﬂ'p(Xp)) = w;r(p) (X;r(p)) = f(p).

This concludes that contractions commute with bringing tensors on S to basic tensors on M
and the reverse direction it is easily derived because the maps are isomorphisms. ]

142



Bibliography

1]

M. Abe, S. Ichinose, and N. Nakanishi, Kerr Metric, de Donder Condition and Gravi-
tational Energy Density, Progress of Theoretical Physics 78 (1987), no. 5, 1186-1201.

Mark Ya Agre, Multipole expansions in magnetostatics, Phys.-Usp. 54 (2011), no. 2,
167.

Abhay Ashtekar, Logarithmic ambiguities in the description of spatial infinity, Found
Phys 15 (1985), no. 4, 419-431.

Abhay Ashtekar and R. O. Hansen, A unified treatment of null and spatial infinity in
general relativity. I. Universal structure, asymptotic symmetries, and conserved quanti-
ties at spatial infinity, Journal of Mathematical Physics 19 (1978), no. 7, 1542-1566.

Stanislav Babak, Jonathan Gair, Alberto Sesana, Enrico Barausse, Carlos F. Sopuerta,
Christopher P. L. Berry, Emanuele Berti, Pau Amaro-Seoane, Antoine Petiteau, and
Antoine Klein, Science with the space-based interferometer LISA. V. Extreme mass-ratio
inspirals, Phys. Rev. D 95 (2017), no. 10, 103012.

Thomas Backdahl, Multipole Moments of Stationary Spacetimes, Ph.D. thesis,
Link6ping University, Linkoping, 2008.

Thomas Béckdahl and Magnus Herberthson, Fxplicit multipole moments of stationary
azisymmetric spacetimes, Class. Quantum Grav. 22 (2005), no. 17, 3585-3894.

Leor Barack and Curt Cutler, Using LISA extreme-mass-ratio inspiral sources to test
off-Kerr deviations in the geometry of massive black holes, Phys. Rev. D 75 (2007),
no. 4, 042003.

Robert Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math.
39 (1986), no. 5, 661-693.

R. Beig, The static gravitational field near spatial infinity I, Gen Relat Gravit 12 (1980),
no. 6, 439-451.

, The multipole expansion in general relativity, Acta Physica Austriaca 53 (1981),
no. 4, 249-270.

R. Beig and W. Simon, Proof of a multipole conjecture due to Geroch, Commun.Math.
Phys. 78 (1980), no. 1, 75-82.

, On the multipole expansion for stationary space-times, Proc. R. Soc. Lond. A
376 (1981), no. 1765, 333-341.

143



[14]

[15]

[19]

[20]

[21]

[22]

23]

[28]

[29]

Antonio N. Bernal and Miguel Sanchez, On Smooth Cauchy Hypersurfaces and Geroch’s
Splitting Theorem, Commun. Math. Phys. 243 (2003), no. 3, 461-470.

Lipman Bers, Fritz John, and Martin Schechter, Partial Differential Equations, Amer-
ican Mathematical Soc., 1964.

Emanuele Berti and Nikolaos Stergioulas, Approximate matching of analytic and nu-
merical solutions for rapidly rotating neutron stars, Monthly Notices of the Royal As-
tronomical Society 350 (2004), no. 4, 1416-1430.

Arthur L. Besse, Einstein Manifolds, Springer, Berlin, Heidelberg, 1987.

Luc Blanchet and Thibault Damour, Radiative gravitational fields in general relativity
1. general structure of the field outside the source, Phil. Trans. Roy. Soc. Lond. A 320
(1986), 379-430.

S. Bochner, Weak solutions of linear partial differential equations, J. Math. Pures Appl.
(9) 35 (1956), 193-202. MR 81446

Béatrice Bonga and Huan Yang, Mimicking Kerr’s multipole moments, Phys. Rev. D
104 (2021), no. 8, 084040.

Yves Brihaye, Eugen Radu, and D. H. Tchrakian, Asymptotically Flat, Stable Black
Hole Solutions in Finstein—Yang-Mills—Chern-Simons Theory, Phys. Rev. Lett. 106
(2011), no. 7, 071101.

Avery E. Broderick, Tim Johannsen, Abraham Loeb, and Dimitrios Psaltis, Testing the
No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*, ApJ
784 (2014), no. 1, 7.

H. S. Cakslaw, Some Multiform Solutions of the Partial Differential Equations of Phys-
ical Mathematics and theri Applications, Proceedings of the London Mathematical So-
ciety s1-30 (1898), no. 1, 121-165.

Vitor Cardoso and Leonardo Gualtieri, Testing the black hole ‘no-hair’ hypothesis, Class.
Quantum Grav. 33 (2016), no. 17, 174001.

Sean M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cam-
bridge University Press, July 2019.

Brandon Carter, Killing Horizons and Orthogonally Transitive Groups in Space-Time,
Journal of Mathematical Physics 10 (1969), no. 1, 70-81.

Piotr T. Chrusciel, Boundary Conditions at Spatial Infinity, Topological Properties and
Global Structure of Space-Time (Peter G. Bergmann and Venzo De Sabbata, eds.),
NATO ASI Series, Springer US, Boston, MA, 1986, pp. 49-59.

, On the structure of spatial infinity. 1. The Geroch structure, Journal of Math-
ematical Physics 30 (1989), no. 9, 2090-2093.

, On completeness of orbits of Killing vector fields, Class. Quant. Grav. 10
(1993), 2091-2102.

144



[30]

[31]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Ignazio Ciufolini, Antonio Paolozzi, and Claudio Paris, Overview of the LARES Mission:
Orbit, error analysis and technological aspects, J. Phys.: Conf. Ser. 354 (2012), no. 1,
012002.

C. J. S. Clarke and D. W. Sciama, Static gravitational multipoles — The connection
between field and source in general relativity, General Relativity and Gravitation 2
(1971), 331-345.

1. G. Contopoulos, F. P. Esposito, K. Kleidis, D. B. Papadopoulos, and L. Witten,
Generating Solutions to the FEinstein - Maxwell Fquations, Int. J. Mod. Phys. D 24
(2015), no. 14, 1550101.

Ivan P. Costa e Silva and José Luis Flores, On the Splitting Problem for Lorentzian
Manifolds with an R-Action with Causal Orbits, Ann. Henri Poincaré 18 (2017), no. 5,
1635-1670.

M. R. Drinkwater, R. Floberghagen, R. Haagmans, D. Muzi, and A. Popescu, GOCE:
ESA’s First Earth Ezxplorer Core Mission, Earth Gravity Field from Space — From
Sensors to Earth Sciences: Proceedings of an ISSI Workshop 11-15 March 2002, Bern,
Switzerland (G. Beutler, M. R. Drinkwater, R. Rummel, and R. Von Steiger, eds.),
Springer Netherlands, Dordrecht, 2003, pp. 419-432.

A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University
Press, 1957.

Frederick J. Ernst, New Formulation of the Azially Symmetric Gravitational Field Prob-
lem, Phys. Rev. 167 (1968), no. 5, 1175-1178.

G. Fodor, C. Hoenselaers, and Z. Perjés, Multipole moments of axisymmetric systems
in relativity, Journal of Mathematical Physics 30 (1989), no. 10, 2252-2257.

Gyula Fodor, Etevaldo dos Santos Costa Filho, and Betti Hartmann, Calculation of
multipole moments of azistationary electrovacuum spacetimes, Phys. Rev. D 104 (2021),
no. 6, 064012.

Jonathan R. Gair, Michele Vallisneri, Shane L. Larson, and John G. Baker, Testing Gen-
eral Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors, Living
Rev. Relativ. 16 (2013), no. 1, 7.

David Garfinkle and Steven G Harris, Ricci fall-off in static and stationary, globally
hyperbolic, non-singular spacetimes, Class. Quantum Grav. 14 (1997), no. 1, 139-151.

Robert Geroch, Multipole Moments. 1. Flat Space, Journal of Mathematical Physics 11
(1970), no. 6, 1955-1961.

__, Multipole Moments. II. Curved Space, J. Math. Phys. 11 (1970), no. 8, 2580—
2588.

, A Method for Generating Solutions of Einstein’s Fquations, Journal of Math-
ematical Physics 12 (1971), no. 6, 918-924.

David J. Griffiths, Introduction to FElectrodynamics, 4th edition ed., Cambridge Univer-
sity Press, Cambridge, June 2017.

145



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3 ed.,
Cambridge University Press, Cambridge, 2018.

Yekta Giirsel, Multipole moments for stationary systems: The equivalence of the Geroch-
Hansen formulation and the Thorne formulation, Gen Relat Gravit 15 (1983), no. 8,
737-754.

Galin N. Gyulchev and Stoytcho S. Yazadjiev, Gravitational lensing by rotating naked
singularities, Phys. Rev. D 78 (2008), no. 8, 083004.

Richard O. Hansen, Multipole moments of stationary space-times, J. Math. Phys. 15
(1974), no. 1, 46-52.

Steven G. Harris, Conformally stationary spacetimes, Class. Quantum Grav. 9 (1992),
no. 7, 1823-1827.

, Static- and Stationary-complete Spacetimes: Algebraic and Causal Structures,
Class. Quant. Grav. 32 (2015), no. 13, 135026.

Steven G. Harris and Robert J. low, Causal monotonicity, omniscient foliations and
the shape of space, Class. Quantum Grav. 18 (2001), no. 1, 27-43.

Magnus Herberthson, On the differentiability conditions at spacelike infinity, Class.
Quantum Grav. 15 (1998), no. 12, 3873-3889.

M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction
for Physicists, Cambridge University Press, February 2006.

C. Hoenselaers and Z. Perjes, Multipole moments of axisymmetric electrovacuum space-
times, Class. Quantum Grav. 7 (1990), no. 10, 1819.

Werner Israel and Gordon A. Wilson, A Class of Stationary Electromagnetic Vacuum
Fields, Journal of Mathematical Physics 13 (1972), no. 6, 865-867.

John David Jackson, Classical Electrodynamics, Wiley, 1998.

A. I. Janis and E. T. Newman, Structure of Gravitational Sources, Journal of Mathe-
matical Physics 6 (1965), no. 6, 902-914.

Allen I. Janis, Ezra T. Newman, and Jeffrey Winicour, Reality of the Schwarzschild
Singularity, Phys. Rev. Lett. 20 (1968), no. 16, 878-880.

C. Jiang and W. Lin, Harmonic metric for Kerr black hole and its post-Newtonian
approximation, Gen Relativ Gravit 46 (2014), no. 2, 1671.

Tim Johannsen and Dimitrios Psaltis, Testing the No-Hair Theorem with Observations
in the FElectromagnetic Spectrum: I. Properties of a Quasi-Kerr Spacetime, ApJ 716
(2010), no. 1, 187.

Gregory C. Jones and John E. Wang, Weyl Card Diagrams, Phys. Rev. D 71 (2005),
no. 12, 124019.

Tathagata Karmakar and Tapobrata Sarkar, Distinguishing between Kerr and rotating
JNW space-times via frame dragging and tidal effects, Gen Relativ Gravit 50 (2018),
no. 7, 85.

146



[63]

[67]

[68]

[71]

[72]

73]

[74]

[75]

[76]

[77]

Shilpa Kastha, Anuradha Gupta, K. G. Arun, B. S. Sathyaprakash, and Chris Van
Den Broeck, Testing the multipole structure and conservative dynamics of compact bi-

naries using gravitational wave observations: The spinning case, Phys. Rev. D 100
(2019), no. 4, 044007.

David J. Kaup, Klein-Gordon Geon, Phys. Rev. 172 (1968), no. 5, 1331-1342.

Shoshichi Kobayashi and Katsumi Nomizu, Foundations of Differential Geometry, vol. 1,
Interscience Publishers, 1963.

Bertram Kostant, Holonomy and the Lie Algebra of Infinitesimal Motions of a Rieman-
nian Manifold, Transactions of the American Mathematical Society 80 (1955), no. 2,
528-542.

P. Kundu, On the analyticity of stationary gravitational fields at spatial infinity, Journal
of Mathematical Physics 22 (1981), no. 9, 2006-2011.

H. P. Kiinzle and A. K. M. Masood-ul Alam, Spherically symmetric static SU(2)
FEinstein—Yang—Mills fields, Journal of Mathematical Physics 31 (1990), no. 4, 928-
935.

D. J. Lamb, Multipole Moments in Finstein’s Gravitational Theory, Journal of Mathe-
matical Physics 7 (1966), no. 3, 458-463.

Klaas Landsman, Foundations of General Relativity, Radboud University Press, Ni-
jmegen, 2021.

Dan A. Lee, Geometric Relativity, Graduate Studies in Mathematics, vol. 201, American
Mathematical Society, Providence, Rhode Island, September 2019.

John M. Lee, Introduction to Smooth Manifolds, 2 ed., Graduate Texts in Mathematics,
vol. 218, Springer New York, NY, 2012.

, Introduction to Riemannian Manifolds, 2 ed., Graduate Texts in Mathemathics,
vol. 176, Springer International Publishing AG, 2018.

Chao Li and Geoffrey Lovelace, Generalization of Ryan’s theorem: Probing tidal cou-
pling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-
ratio inspirals, Phys. Rev. D 77 (2008), no. 6, 064022.

Wenbin Lin and Chunhua Jiang, Exact and unique metric for Kerr-Newman black hole
in harmonic coordinates, Phys. Rev. D 89 (2014), no. 8, 087502.

Jon Mathews, Gravitational Multipole Radiation, Journal of the Society for Industrial
and Applied Mathematics 10 (1962), no. 4, 768-780.

Daniel R. Mayerson, Gravitational multipoles in general stationary spacetimes, SciPost
Phys. 15 (2023), no. 4, 154.

Ettore Minguzzi, Lorentzian causality theory, Living Rev Relativ 22 (2019), no. 1, 3.

Edwin E. Moise, Affine Structures in 8-Manifolds: V. The Triangulation Theorem and
Hauptvermutung, Annals of Mathematics 56 (1952), no. 1, 96-114.

147



[80]

[81]

[90]

[91]

[92]

Charles B. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Der
Mathematischen Wissenschaften, vol. 130, Springer, Berlin, Heidelberg, 1966.

James R. Munkres, 1930, Topology, pearson new international edition, second edition
ed., Pearson Custom Library, Pearson, Harlow, Essex, 2014.

Mikio Nakahara, Geometry, topology and physics, 2 ed., CRC Press, 2003.

José Natario, An Introduction to Mathematical Relativity, Springer International Pub-
lishing, Cham, 2021.

K. Nomizu, Lie groups and differential geometry, Mathematical Soc. of Japan, 1956.

Niall O Murchadha, Total energy momentum in general relativity, Journal of Mathe-
matical Physics 27 (1986), no. 8, 2111-2128.

Barrett O’Neill, Semi-Riemannian Geometry With Applications to Relativity, Academic
Press, July 1983.

A. Papapetrou, Fine rotationssymmetrische Ldsung in der allgemeinen Relativititsthe-
orie, Annalen der Physik 447 (1953), no. 4-6, 309-315.

Roger Penrose, Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett. 10
(1963), no. 2, 66-68.

Peter Petersen, Riemannian Geometry, 3 ed., Graduate Texts in Mathematics, vol. 171,
Springer International Publishing AG, 2016.

Eric Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cam-
bridge University Press, Cambridge, 2004.

Eric Poisson and Clifford M. Will, Gravity: Newtonian, Post-Newtonian, Relativistic,
Cambridge University Press, May 2014.

Dimitrios Psaltis, Norbert Wex, and Michael Kramer, A Quantitative Test of the No-
Hair Theorem with Sqgr A* using stars, pulsars, and the Event Horizon Telescope, ApJ
818 (2016), no. 2, 121.

H. Quevedo, Multipole Moments in General Relativity —Static and Stationary Vacuum
Solutions—, Fortschritte der Physik/Progress of Physics 38 (1990), no. 10, 733-840.

Mostafizur Rahman and Arpan Bhattacharyya, Prospects for determining the nature
of the secondaries of extreme mass-ratio inspirals using the spin-induced quadrupole
deformation, Phys. Rev. D 107 (2023), no. 2, 024006.

Remo Ruffini and Silvano Bonazzola, Systems of Self-Gravitating Particles in General
Relativity and the Concept of an Equation of State, Phys. Rev. 187 (1969), no. 5,
1767-1783.

Fintan D. Ryan, Gravitational waves from the inspiral of a compact object into a mas-
sive, azisymmetric body with arbitrary multipole moments, Phys. Rev. D 52 (1995),
no. 10, 5707-5718.

, Accuracy of estimating the multipole moments of a massive body from the
gravitational waves of a binary inspiral, Phys. Rev. D 56 (1997), no. 4, 1845-1855.

148



(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]
[113]

[114]

José D. Sanabria-Gémez, José L. Herndndez-Pastora, and F. L. Dubeibe, Innermost
stable circular orbits around magnetized rotating massive stars, Phys. Rev. D 82 (2010),
no. 12, 124014.

Franz E Schunck and Eckehard W Mielke, General relativistic boson stars, Class. Quan-
tum Grav. 20 (2003), no. 20, R301-R356.

James Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Mathe-
matica 113 (1965), 219-240.

Masaru Shibata and Misao Sasaki, Innermost stable circular orbits around relativistic
rotating stars, Phys. Rev. D 58 (1998), no. 10, 104011.

Walter Simon, The multipole expansion of stationary Einstein—Maxwell fields, Journal
of Mathematical Physics 25 (1984), no. 4, 1035-1038.

Walter Simon and Robert Beig, The multipole structure of stationary space-times, Jour-
nal of Mathematical Physics 24 (1983), no. 5, 1163-1171.

Carlos F. Sopuerta and Nicolas Yunes, New Kludge scheme for the construction of ap-
prozimate waveforms for extreme-mass-ratio inspirals, Phys. Rev. D 84 (2011), no. 12,
124060.

Thomas P. Sotiriou and Theocharis A. Apostolatos, Corrections and comments on the
multipole moments of axisymmetric electrovacuum spacetimes, Class. Quantum Grav.
21 (2004), no. 24, 5727.

Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, and Ed-
uard Herlt, Ezact Solutions of Finstein’s Field Equations, 2 ed., Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cambridge, 2003.

Kip S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys. 52
(1980), no. 2, 299-339.

Kip S. Thorne and Sandor J. Kovécs, The generation of gravitational waves. 1. Weak-
field sources, ApJ 200 (1975), 245.

M. G. J. van der Burg, Multipole Expansions for Stationary Fields in General Relativity,
Proceedings of the Royal Society of London Series A 303 (1968), 37—44.

K. S. Virbhadra, Janis—newman—winicour and wyman solutions are the same, Interna-
tional Journal of Modern Physics A 12 (1997), no. 27, 4831-4835.

P. N. A. M. Visser, Gravity field determination with GOCE and GRACE, Advances in
Space Research 23 (1999), no. 4, 771-776.

Robert M. Wald, General Relativity, The University of Chicago Press, 1984.

Clifford M. Will, Testing the General Relativistic “No-Hair” Theorems Using the Galac-
tic Center Black Hole Sagittarius A*, ApJ 674 (2008), no. 1, L.25.

D. G. Willmer, Multipole moments in general relativity, J. Phys. A: Math. Gen. 14
(1981), no. 10, 2653.

149



[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Max Wyman, Static spherically symmetric scalar fields in general relativity, Phys. Rev.
D 24 (1981), no. 4, 839-841.

B. C. Xanthopoulos, Multipole moments in general relativity, J. Phys. A: Math. Gen.
12 (1979), no. 7, 1025.

, Linear superposition of solutions of the Finstein-Maxwell equations, Class.
Quantum Grav. 3 (1986), no. 2, 157-167.

Kent Yagi, Koutarou Kyutoku, George Pappas, Nicolds Yunes, and Theocharis A. Apos-
tolatos, Effective no-hair relations for neutron stars and quark stars: Relativistic results,
Phys. Rev. D 89 (2014), no. 12, 124013.

Yunlong Zang, Xiaokai He, and Zhoujian Cao, Harmonic coordinates of the Kerr metric
revisited, Class. Quantum Grav. 37 (2020), no. 20, 207002.

Frank J. Zerilli, Gravitational Field of a Particle Falling in a Schwarzschild Geometry
Analyzed in Tensor Harmonics, Phys. Rev. D 2 (1970), no. 10, 2141-2160.

Xiao-He Zhang, Multipole expansions of the general-relativistic gravitational field of the
external universe, Phys. Rev. D 34 (1986), no. 4, 991-1004.

Tie-Guang Zi, Jian-Dong Zhang, Hui-Min Fan, Xue-Ting Zhang, Yi-Ming Hu, Changfu
Shi, and Jianwei Mei, Science with the TianQin Observatory: Preliminary results on

testing the no-hair theorem with extreme mass ratio inspirals, Phys. Rev. D 104 (2021),
no. 6, 064008.

150



	Introduction
	I Geometric Setting
	Stationary Spacetimes
	Definition of stationary spacetimes
	Observer space
	Twist covector field
	Einstein equations

	Asymptotic Flatness in Stationary Spacetimes
	Definitions of asymptotic flatness
	Uniqueness of the one-point conformal completion
	Comparison of different approaches to asymptotic flatness


	II Multipole Moments in Vacuum
	Geroch–Hansen formalism
	Mass and angular momentum potentials
	Multipole moments
	Axisymmetric spacetimes and the Kerr solution

	Thorne formalism
	Spherical harmonics
	Multipole moments
	Kerr spacetime

	Multipole moments in vacuum
	Equivalence of both formalisms
	Additional properties of multipole moments in the literature


	III Multipole Moments in Spacetimes with Matter
	Geometric multipole moments in electrovacuum
	Multipole moments
	Axisymmetric spacetimes and the Kerr–Newman solution

	Coordinate approach to multipole moments in electrovacuum
	Multipole moments in electrostatics and magnetostatics
	Linearised Einstein–Maxwell solutions
	Multipole moments in curved electrovacuum

	Multipole moments for other matter fields
	Gravitational multipole moments with arbitrary matter fields
	Scalar field solutions

	Conclusion and discussion
	Tensor fields on the observer space
	Bibliography


